• Title/Summary/Keyword: 수문빈도해석

Search Result 257, Processing Time 0.02 seconds

Development of lumped model to analyze the hydrological effects landuse change (토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.233-252
    • /
    • 1994
  • One of major advantages of Lumped model is its ability to simulate extended flows. A further advantage is that it requires only conventional, readily available hydrological data (rainfall, evaporation and runoff). These two advantages commend the use of this type of model for the analysis of the hydrological effects of landuse change. Experimental Catchment(K11) of Kimakia site in Kenga experienced three phases of landuse change for sixteen and half years. The Institute of Hydrology offered the hydrological data from the catchment for this research. On basis of Blackie's(l972) 9-parameter model, a new model(R1131) was reorganized in consideration of the following aspects to reflect the hydrological characteristics of the catchment: 1) The evapotranspiration necessary for the landuse hydrology, 2) high permeable soils, 3) small catchment, 4) input option for initial soil moisture deficit, and 5) othel modules for water budget analysis. The new model is constructed as a 11-parameter, 3-storage, 1-input option model. Using a number of initial conditions, the model was optimized to the data of three landuse phases. The model efficiencies were 96.78%, 97.20%, 94.62% and the errors of total flow were -1.78%, -3.36%, -5.32%. The bias of the optimized models were tested by several techniques, The extended flows were simulated in the prediction mode using the optimized model and the data set of the whole series of experimental periods. They are used to analyse the change of daily high and low-flow caused by landuse change. The relative water use ratio of the clearing and seedling phase was 60.21%, but that of the next two phases were 81.23% and 83.78% respectively. The annual peak flows of second and third phase at a 1.5-year return period were decreased by 31.3% and 31.2% compared to that of the first phase. The annual peak flow at a 50-year return period in the second phase was an increase of only 4.8%, and that in the third phase was an increase of 12.9%. The annual minimum flow at a 1.5-year return period was decreased by 34.2% in the second phase, and 34.3% in the third phase. The changes in the annual minimum flows were decreased for the larger return periods; a 20.2% decrease in the second phase and 20.9% decrease in the third phase at a 50-year return period. From the results above, two aspects could be concluded. Firstly, the flow regime in Catchment K11 was changed due to the landuse conversion from the clearing and seedling phade to the intermediate stage of pine plantation. But, The flow regime was little affected after the pine trees reached a certain height. Secondly, the effects of the pine plantation on the daily high- and low-flow were reduced with the increase in flood size and the severity of drought.

  • PDF

A Study The Structural Stability of the Fence Ohgokmun Soswaewon Factor Analysis (소쇄원 오곡문 담장의 구조적 안정에 미치는 요인 분석)

  • Jang, Ik-Sik;Jeon, Hyeong-Soon;Ha, Tae Ju;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.113-122
    • /
    • 2013
  • In this study, the traditional structure of the impact on the stability analysis. Korean traditional landscape architecture column space of stonework stable composition as the foundation of the fence for a long time been known to fall down and not maintained. The destination of research Ohgokmun Damyang Soswaewon fence which is in harmony with nature is one of the traditional structures that affect its shape without being kept so far came true. This includes our ancestral wisdom and that wisdom can guess guesswork. But I let the traditional reproduction incidence structures frequently. This deviation from the traditional method of construction application of shorthand stand. Thus, the subject of this study, the factors that do not fall down fences Ohgokmun solution is to indirectly gain the weak. In addition, epidemiological studies and the methods of calculation of the inferred physical examination, the results of the analysis were derived through the following. First, the internal factors of the fence Ohgokmun constituting the structural member and the coupling of the scheme. 1) based on stable ground. Greater role in the country rock The fact that the settlement will have no symptoms. 2) to minimize the friction caused by hydrological water to remove the two-pronged process through stone work building form and menu sustaining power in hydrology and flooding made against the bypass channel. 3) due to the load bearing capacity and durability to withstand the strength of the material and the construction of structures in the form of a dispersion of power between each individual to maximize the process of getting traction was applied. Second, external factors Ohgokmun fence the results obtained through the calculation of the dynamics of repair, is greatly affected by the wind and the water gate of the fence, but the action of the structural stability of the lack of power that hurt enough conclusion. In this study, the results of the structure of internal and external influence as well through the structure can be viewed as composed consisting. However, over the next follow-up in terms of climate and environmental factors due to the fact that the fall might.

Derivation of Plotting Position Formulas Considering the Coefficients of Skewness for the GEV Distribution (왜곡도 계수를 고려한 GEV 분포의 도시위치공식 유도)

  • Kim, Soo-Young;Heo, Jun-Haeng;Choi, Min-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.85-96
    • /
    • 2011
  • Probability plotting position is generally used for the graphical analysis of the annual maximum quantile and the estimation of exceedance probability to display the fitness between sample and an appropriate probability distribution. In addition, it is used to apply a specific goodness of fit test. Plotting position formula to define the probability plotting position has been studied in many researches. Especially, the GEV distribution which is an important probability distribution to analyze the frequency of hydrologic data was popular. In this study, the theoretical reduced variates are derived using the mean value of order statistics to derived an appropriate plotting position formula for the GEV distribution. In addition, various forms of plotting position formula considering various sample sizes and coefficients of skewness related with shape parameters are applied. The parameters of plotting position formulas are estimated using the genetic algorithm. The accuracy of derived plotting position formula is estimated by the errors between the theoretical reduced variates and those by various plotting position formulas including the derived ones in this study. As a result, the errors by derived plotting position formula is the smallest at the range of shape parameter with -0.25~0.10.

The Effectiveness of Overtopping Discharge Reduction for Restricted Water Level of Reservoir During Flood Period (홍수기중 저수지의 제한수위에 따른 월류량 저감효과)

  • Kim, Yong-Kuk;Kim, Young-Sung;Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.442-442
    • /
    • 2011
  • 우리나라는 홍수조절이나 통제를 목적으로 10개의 다목적댐을 통한 홍수방재시스템을 운영하고 있다. 다목적댐 또한 방류능력과 저류능력에 한계가 있기 때문에 안정적인 홍수조절을 위해서는 유입량과 유출량을 미리 예측할 수 있어야 한다. 하지만, 강수량은 그 변동이 심하여 정확한 예측이 어렵기 때문에 합리적인 하천 구조물의 설계와 홍수예측기술의 발전을 위해서는 강우-유출 해석뿐만 아니라 과거의 수문자료를 사용한 통계적인 분석이 요구된다. 최근 기후변화로 인해 과거에 겪지 않았던 이상 기후현상이 빈번하게 나타나고 있다. 기상청발표에 따르면 최근 10년간(1996~2005) 15개 지점의 평균 연강수량은 1,458.7 m로 약 10 �時貂� 하였고, 특히 여름철은 18 %로 증가폭이 가장 크며 호우일수는 30년 평균이 2일인데 비하여 2.8일로 0.8일 증가하였다. 이러한 강수량 및 호우일수 증가는 여름철 심각한 수해를 초래할 수 있다. 본 연구는 기후변화로 인한 수해를 대비하여 홍수기중 저수지 제한수위운영의 안정성을 검토하였다. 연구 대상 지역은 광교저수지로 수원천 상류부인 경기도 수원시 장안구 연무동에 위치한다. 유역면적은 10.98 km, 유효저수량은 250.0 만$m3$이며, 현재 예비취수원으로 사용되고 있다. 기후변화에 따른 하류지역의 예상치 못한 홍수피해를 사전에 예방하기 위해 광교저수지 유역의 설계 강수량과 설계 홍수량을 산정하였다. 제한수위의 시나리오는 현재 시행중인 제한수위와 만수위를 포함하여 5개로 설정하였다. 설계 홍수량이 광교저수지로 유입될 때 시나리오에 따른 월류량은 웨어공식을 이용하여 산정하였으며 결론은 다음과 같다. 1. 39년간의 최다 일 강수량 자료를 사용하여 100년 빈도의 설계 강수량을 Gumbel 분포법으로 산정한 결과 344.4 mm임을 알 수 있었다. 2. 광교저수지 유역의 설계 홍수량을 SCS 방법을 이용하여 산정한 결과 $216.2\;m^3/s$/s로 나타났으며, 총 유입량은 $301.0\;m^3$/day로 파악되었다. 3. 광교저수지로 설계홍수량이 유입될 때 제한수위 시나리오에 따른 최대 방류량은 EL. 87 m의 경우 $23.1\;m^3/s$, EL. 89 m의 경우$27.5\;m^3/s$ EL. 91.36 m의 경우 $79.6\;m^3/s$, EL. 93 m의 경우 $121.1\;m^3/s$ EL. 95.2 m의 경우 $137.`\;m^3/s$이다. 광교저수지 하류부분의 하천정비기본계획상의 설계 홍수량은 $114\;m^3/s$로 홍수기중 저수지의 제한수위는 EL. 91.36 m이하로 설정하는 것이 바람직한 것으로 판단된다.

  • PDF

Evaluation of the Application on Distributed Inundation Routing Model (SIMOD) Using MDM and FWA Method (다중흐름방향법과 평수가정법을 이용한 분포형 침수추적모형(SIMOD)의 적용성 평가)

  • Kim, Jin Hyuck;Lee, Suk Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.261-268
    • /
    • 2018
  • The study used the simplified flooding analysis model, SIMOD, to distribute the total flood discharge by time, so research on flooding in urban areas can be conducted. The conventional flooding analysis models have limitations in constructing input data and take a long time for analysis. However, SIMOD is useful because it supports rapid decision-making process using quick modeling based on simple hydrological data, such as topography and inflow flood of the study area, to analyze submerged routes formed by flooding. Therefore, the study used the SIMOD model to analyze flooding in urban areas before conducting a comparative study with the outputs from FLO-2D, which is one of the conventional flooding analysis models, to identify the model's applicability. Seongseoje was selected as the study area, as it is located downstream the Geumho river where streams flow in the adjacent areas, and dikes are high enough to apply the "Overflow and Break" scenario for urban areas. With regard to topography, the study applied DEM data for the conventional flooding analysis and DSM data to represent urban building communities, distribution of roads, etc. Input flood discharge was calculated by applying the rectangular weir equation under the bank and break scenario through a 200-year return period of a design flood level. Comparative analysis was conducted in a flooded area with a simulation time of 1-24 hours. The time for the 24-hour simulation in SIMOD was less than 7 minutes. Compared with FLO-2D, the difference in flooded areas was less than 20%. Furthermore, the study identified the need for topography data using DSM for urban areas, as the analysis result that applies DSM showed the influence of roads and buildings.

A Derivation of Regional Representative Intensity-Duration-Frequency Relationship Using Multivariate Analysis (다변량 분석을 이용한 권역별 대표확률강우강도식의 유도)

  • Lee, Jung-Sik;Cho, Seong-Geun;Jang, Jin-Uk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.13-24
    • /
    • 2007
  • This study is to derive the rainfall intensity formula based on the representative probability distribution using multivariate analysis in Korea. The annual maximum rainfall data at 57 stations having more than 30years long records were used for 12 durations(10min, 1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24hr). 50 rainfall characteristics elements are analyzed from the collected data. The widely used 14 probability distributions are applied to the basic data in hydrologic frequency analysis. The homogeneous tests(principal component and cluster analysis) are applied to find the rainfall homogeneity. The results of this study are as followings; (1) The homogeneous test shows that there is no appropriate representative distribution for the whole duration in Korea. But hydrological homogeneous regions of point rainfall could be divided by 5 regions. (2) The GEV distribution for zones I, III, IV, V and the Gumbel distribution for zone II are determined as the representative probability distribution. (3) Comparative analysis of the results shows that the probable rainfalls of representative zones are different from those of existing researches. (4) Rainfall intensity formulas are determined on the basis of the linearization technique for the probable rainfall.

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.