• Title/Summary/Keyword: 솔더접합부

Search Result 209, Processing Time 0.02 seconds

Effect of Zn content on Shear Strength of Sn-0.7Cu-xZn and OSP surface finished Joint with High Speed Shear Test (Sn-0.7Cu-xZn와 OSP 표면처리 된 기판의 솔더접합부의 고속 전단강도에 미치는 Zn의 영향)

  • Choi, Ji-Na;Bang, Jae-Oh;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2017
  • We investigated effect of Zn content on shear strengh of Sn-0.7Cu-xZn and OSP surface finished solder joints. Five pastes of Sn-0.7Cu-xZn (x=0, 0.5, 1.0, 1.5, 2.0 wt.%) solders were fabricated by mixing of solder powder and flux using planatary mixer. $180{\mu}m$ diameter solder balls were formed on OSP surface finished Cu electrodes by screen print method, and the reflow process was performed. The shear strength was evaluated with two high shear speeds; 0.01 and 0.1 m/s. The thickness of the intermetallic compound(IMC) layer was decreased with increasing Zn content in Sn-0.7Cu-xZn solder. The highest shear strength was 3.47 N at the Zn content of 0.5 wt.%. As a whole, the shear strength at condition of 0.1 m/s was higher than that of 0.01 m/s because of impact stress. Fracture energies were calculated by F-x (Force-displacement) curve during high speed shear test and the tendency of fracture energy and that of shear strength were good agreement each other. Fracture took place within solder matrix at lower Zn content, and fracture occured near the interface of OSP surface finished Cu electrode and solder at higher Zn content.

Thermal Fatigue Characteristics of $\mu$ BGA Solder Joints with Underfill (언더필이 적용된 $\mu$p BGA 솔더 접합부의 열피로특성)

  • 고영욱;김종민;이준환;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.25-30
    • /
    • 2003
  • There have been many researches for small scale packages such as CSP, BGA, and Flipchip. Underfill encapsulant technology is one of the latest assembly technologies. The underfill encapsulant could enhance the reliability of the packages by flowing into the gap between die and substrate. In this paper, the effects of underfill packages by both aspects of thermal and mechanical reliabilities are studied. Especially, it is focused to value board-level reliability whether by the underfill is applied or not. First of all, The predicted thermal fatigue lifes of underfilled and no underfilled $\mu$ BGA solder joints are performed by Coffin-Manson's equation and FEA program, ANSYS(version 5.62). Also, the thermal fatigue lifes of $\mu$ BGA solder joints are experimented by thermal cycle test during the temperature, 218K to 423k. Consequently, both experimental and numerical study show that $\mu$ BGA with underfill has over ten times better fatigue lift than $\mu$ BGA without underfill.

A Study on the Characteristics of Sn-Ag-X Solder Joint (Sn-Ag-X계 무연솔더 접합부의 미세조직 및 전단강도에 관한 연구)

  • 김문일;문준권;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.77-81
    • /
    • 2002
  • Many kinds of Pb-free solder have been investigated because of the environmental concerns. Sn-Ag-Cu system is well blown as most competitive Pb-free solder. However, since Sn-Ag-Cu system has relatively high melting point compared to Sn-Pb eutectic, it may a limitation, the some application. In this study, Bi and In contained solder of $Sn_3Ag_8Bi_5In$ which has relatively lower melting point, $188~204^{\circ}C$, was investigated. $Sn_3Ag_8Bi_5In$ solder ball of $500\mu\textrm{m}$ diameter was set on the Ni/Cu/Cr-UBM and reflow soldered in the range of $220~240^{\circ}C$ for 5~15s. The maximum shear strength of the solder ball was around 170mN by reflowing at $240^{\circ}C$ for 10s. Intermetallic compound formed on the UBM of Si-wafer was analysed by SEM(scanning electron microscope) and XRD(X-ray diffractometer).

The wettability of Sn-Xwt%Cu solder (Sn-Xwt%Cu 솔더의 젖음성에 관한 연구)

  • Lee, Jong-Beom;No, Bo-In;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.199-201
    • /
    • 2006
  • The wetting balance test was carried out to compare the wettability of Sn-Xwt%Cu($0{\sim}3$wt%) solders. And, IMCs which were formed at interface between solders and substrates were investigated by using XRD(x-ray diffractometer), SEM(scanning electron microscope) and EDS(energy dispersive spectroscope). The value of ${\gamma}_[fl}$ and(${\gamma}_{fs}-{\gamma}_{ls}$) had a tendency to increase with increasing wetting temperature. The activation energy that was calculated between the bare Cu substrate and flux was increased in the following order Sn-0.7wt%Cu(68.42 kJ/mol);Sn-3.0wt%Cu(72.66 kJ/mol);100wt%Sn solder(94.53 kJ/mol).

  • PDF

Microstructure and Mechanical Property of In48wt%Sn Solder / Electrolytic Au/Ni/Cu BGA Substrate with Multiple Reflows (리플로우에 따른 In-48Sn 솔더와 전해 Au/Ni/Cu BGA 기판의 미세구조와 기계적 특성)

  • 구자명;김대곤;정승부
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.75-77
    • /
    • 2004
  • Microstructure and mechanical property of In48Sn solder on electrolytic Au/Ni/Cu BGA substrate were investigated with the number of reflows. AuIn and AuIn$_2$ IMCs were formed at the interface solder and pad after 1reflow. An increase of the number of reflows changed AuIn into AuIn$_2$. AuIn$_2$ IMC layer at the interface broke and spalled away into the solder after 3reflows. Shear force decreased with the number of reflows because the weakness of the interface by the spalling of AuIn$_2$ IMC layer.

  • PDF

The characterization of anisotropic Si wafer etching and fabrication of flip chip solder bump using transferred Si carrier (Si웨이퍼의 이방성 식각 특성 및 Si carrier를 이용한 플립칩 솔더 범프제작에 관한 연구)

  • Mun Won-Cheol;Kim Dae-Gon;Seo Chang-Jae;Sin Yeong-Ui;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.16-17
    • /
    • 2006
  • We researched by the characteristic of a anisotropic etching of Si wafer and the Si career concerning the flip chip solder bump. Connectors and Anisotropic Conductive Film (ACF) method was already applied to board-to-board interconnection. In place of them, we have focused on board to board interconnection with solder bump by Si carrier, which has been used as Flip chip bonding technology. A major advantage of this technology is that the Flexible Printed Circuit (FPC) is connected in the same solder reflow process with other surface mount devices. This technology can be applied to semiconductors and electronic devices for higher functionality, integration and reliability.

  • PDF

Interfacial Reaction and Shear Properties with Reflow Conditions for In-48Sn Solder on BGA Package (리플로우 조건에 따른 In-48Sn 솔더와 BGA 패키지의 계면반응 및 전단 특성 변화)

  • 구자명;이영호;김대곤;김대업;정승부
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.193-195
    • /
    • 2003
  • Micro-structure and shear properties with reflow conditions, reflow temperature and time, for In-48Sn solder on BGA package were examined at the temperature between 140 and 170$^{\circ}C$ for 10 to 3600sec. With increasing reflow temperature and time, the thickness of intermetallic compound formed between solder and pad increased. Shear test indicated shear force increased in the range to a critical value of reflow time, and decreased over a critical reflow time. With increasing reflow temperature and time, the crater occurred on fracture surface because of a increase of crater by voids and IMC particles precipitated in solder.

  • PDF

Effects of Wicking on Solder Joint Profile in Gullwing Lead (워킹이 Gullwing 리드의 솔더 접합부 형상에 미치는 영향)

  • 최동필;유중돈;이태수;최상균
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.117-124
    • /
    • 1998
  • During the reflow process in SMT, the molten solder has been observed to move upward and solidify along the gullwing lead, which is called the wicking phenomenon. In this paper, possible causes of the wicking are investigated, and its effects on the solder joint profile are quantitatively estimated by introducing the wicking constant. The free energy reduction by intermetallic formation between the copper and tin seems to be the major source of wicking action. The joint profiles of the gullwing lead are calculated using the previous finite element formulation incorporated with the wicking constant. The calculated results show reasonably good agreements with the experimental data when the wicking effects are considered.

  • PDF

Reliability study of Sn-Zn lead-free solder for SMT application (표면실장 적용을 위한 Sn-Zn 무연 솔더의 신뢰성 연구)

  • Yun, Jeong-Won;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.219-221
    • /
    • 2005
  • Sn-9Zn solder balls were bonded to Cu, ENIG (Electroless Nickel/Immersion Gold) and electrolytic Au/Ni pads, and the effect of aging on their joint reliability was investigated. The interfacial products were different from the general reaction layer formed in a Sn-base solder. The intermetallic compounds formed in the solder/Cu joint were $Cu_{5}Zn_{8}$ and $Cu_{6}Sn_{5}$. After aging treatment, voids formed irregularly at the bottom side of the solder because of Sn diffusion into the $Cu_{5}Zn_{8}$ IMC. In the case of the solder/ENIG joint, $AuZn_{3}$ IMCs were formed at the interface. In the case of the Au/Ni/Cu substrate, an $AuZn_{3}$ IMC layer formed at the interface due to the fast reaction between Au and Zn. In addition, the $AuZn_{3}$ IMC layer became detached from the interface after reflow. When the aging time was extended to 100 h, $Ni_{5}Zn_{21}$ IMC was observed on the Ni substrate.

  • PDF

Prediction of Three-Dimensional Solder Joint Profile in Gullwing Lead using Finite Element Modeling (유한요소 모델링을 이용한 Gullwing 리드의 3차원 솔더 접합부 형상 예측)

  • 최동필;유증돈;이태수
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.109-116
    • /
    • 1998
  • The three-dimensional profile of a solder fillet is predicted by minimizing the surface tension and gravity energies of the solder joint using finite element modeling. Geometric complexity stemming from the inclined plane of the gullwing lead is resolved by employing three element types. These element types are used to describe the joint profile formed on the vertical, inclined and interfacial planes. The predicted solder joint profiles show good agreements with the experimental data provided that the solder volume is adjusted considering the wicking effects. Effects of the pad length, inclined lead angle and solder volume on joint profiles are also investigated.

  • PDF