• Title/Summary/Keyword: 세균 대사물질

Search Result 97, Processing Time 0.026 seconds

Isoflavones and biotransformed dihydrodaidzein production with in vitro cultured callus of Korean wild arrowroot Pueraria lobata (한국산 야생칡 캘러스에서의 이소플라본 및 생물전환에 의한 디하이드로다이드제인 분석)

  • Lee, Eunji;Kwon, Jung Eun;Kim, Soojung;Cha, Min-Seok;Kim, Inhye;Kang, Se Chan;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.217-223
    • /
    • 2013
  • Pueraria lobata, a medicinally important leguminous plant produces various isoflavones including puerarin, daidzin and daidzein which are metabolized to equol via dihydrodaidzein and tetrahydrodaidzein by the bacterial fermentation of natural isoflavone sources in human intestines. In this study, we described callus proliferation and isoflavone production in callus of Korean wild arrowroot and dihydrodaidzein biosynthesis in callus extract fermented with Pediococcus pentosaceus. Proliferation was the best at callus cultured in the medium containing 1.0 mg/L TDZ and 1.0 mg/L NAA at light condition for 12 days. Puerarin was significantly more produced at callus cultured in the medium containing 2.0 mg/L kinetin and 1.0 mg/L NAA at dark condition for 16 days, but daidzin and daidzein were not significant. Callus extract was successfully fermented with P. pentosaceus and dihydrodaidzein, which is one of equol precursors formed by biotransformation, was confirmed to be produced. These results will facilitate mass production of callus and isoflavones as equol precursors from Korean wild arrowroot and can be applied for the production of equol by biotransformation in vitro.

A Study Bioremediation of Tidal Flat by Microorganism in Pilot Scale Test (환경정화 미생물에 의한 갯벌의 생물학적 정화에 대한 파일럿 규모의 연구)

  • Choi, Hye Jin;Han, Young Sun;Park, Doo Hyun;Oh, Bo Young;Hur, Myung Je;Jo, Nam-Gyu;Kim, Young Hee;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1110-1117
    • /
    • 2014
  • Tidal flats are continuously contaminated by human activities. This study assessed the bioremediation efficiency of tidal flat soil using microcosm reactors and microorganisms originating from the tidal area. We screened 135 bacterial strains that produce extracellular enzymes from the tidal area located in the North port of Incheon bay. Two bacterial strains (Pseudoalteromonas sp. and IC35 Halothiobacillus neapolitanus IC_S22) were selected and used in the microcosm reactors, which were specially designed to functionally mimic the ecological conditions of the tidal flats. Pseudoalteromonas sp. IC35 was selected based on its relatively high activity of the enzymes amylase, cellulose, lipase, and protease. Halothiobacillus neapolitanus IC_S22 was selected for oxidation of sulfur. The M1 and M2 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M2 was first inoculated with Pseudoalteromonas sp. IC35 before the seawater feeding. The initial COD in both the M1 and M2 microcosm reactors was 320 mg/l. The final COD was 21 mg/l (M1) and 7 mg/l (M2). The M3 and M4 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M4 was first inoculated with H. neapolitanus IC_S22. The initial sulfate concentration in both the M3 and M4 microcosm reactors was 660 mg/l, and the maximum sulfate concentration was 1,360 mg/l (M3) and 1,600 mg/l (M4).

Effect of Several Physicochemical Factors on the Biodegradation of Acrylamide by Pseudomonas sp. JK-7 Isolated from Paddy Soil (논 토양에서 분리한 Pseudomonas sp. JK-7에 의한 Acrylamide의 생분해에 영향을 미치는 물리화학적 요인)

  • 천재우;호은미;오계헌
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • The purpose of this work was to investigate the relationships between acrylamide degradation by Pseudomonas sp. JK-7 and several relevant physicochemical environment parameters. In initial experiments, the bacterial culture, strain JK-7 isolated from paddy soil sample was developed to grow aerobically with acrylamide as the sole source of carbon and nitrogen. The bacterium was identified as genus Pseudomonas in the basis of use BIOLOG test, and designated as Pseudomunas sp. JK-7. Strain JK-7 could degrade 50 mM acrylamide completely within 72 hours of incubation. Major intermediates resulting from acrylamide degradation were not detected with the HPLC methodology except acrylic acid which appeared to accumulate transiently in the growth medium. The pH increased from 7.0 to 8.7 with complete degradation of the initial 50 mM acrylamide within 72 hours of incubation. pH control in the range of 5 to 9 influenced the growth of JK-7 and acrylamide degradation, whereas it was not examined the growth and degradation at pH 3 or pH 11, respectively. The effect of supplemented carbons (e.g., glucose, fructose, citrate, succinate) on the acrylamide degradation by the test culture of JK-7 was evaluated. The results indicated that the addition of carbons accelerated the bacterial growth and acrylamide degradation compared to those in the absence of supplemented carbons. The effect of supplemented nitrogens on the degradation was monitored. Increasing concentrations of yeast extract resulted in higher growth yield, based on the turbidity measurement, and complete degradation of acrylamide. However, acrylamide degradation was essentially uninfluenced by the addition of $(NH_{4})_{2}SO_{4}$, $NH_4Cl$ or urea. Addition of $AgNO_3$, $CuSO_4$ or $HgCl_2$ except $ZnSO_4$ in the test culture inhibited the degradation of acrylamide and growth of JK-7.

Evaluation of Antibacterial and Therapeutic Effects of a Sodium salts Mixture against Salmonella typhimurium in Murine Salmonellosis (나트륨 염 복합조성물의 마우스 살모넬라증에 대한 항균 및 치료효과)

  • Lee, Yeo-Eun;Cha, Chun-Nam;Park, Eun-Kee;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2011
  • Salmonellosis is a major bacterial zoonosis that causes self-limited enteritis to fatal infection in animals and food-borne infection and typhoid fever in humans. Multidrug-resistant strains of Salmonella spp. has increased over the last several decades and recently causes more serious problems in public health. The present study was investigated bacteriocidal effects of sodium chlorate, sodium azide, sodium cyanide, and sodium salts mixture containing sodium chlorate, sodium azide, and sodium cyanide on infection with S. typhimurium in macrophage RAW 264.7 cells, and antibacterial effects of sodium salts mixture for murine salmonellosis. In infection assay of S. typhimurium in RAW 264.7 cells, bacterial survival rates within macrophage in all treated groups was significantly reduced comparing to that of the control group with the passage of incubation time. Administration of sodium salts mixture showed a therapeutic effect for S. typhimurium infected ICR mice. The mortality of mice treated with sodium salts mixture was 70% until 12 days, while that of control mice was 100% until 9 days after S. typhimurium infection. The results of this study strongly indicate that sodium salts mixture has a potency treatment for murine salmonellosis.

Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi (식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.603-613
    • /
    • 2019
  • This study was carried out to examine the antagonistic effect against phytopathogenic fungi of isolated strains from soil samples collected from Busan, Changwon, and Jeju Island: Botrytis cinerea, Colletotrichum acutatum, Corynespora cassiicola, Fusarium sp., Rhizoctonia solani, Phytophthora capsici, and Sclerotinia sclerotiorum. According to results of our studies, isolated strains showed an antagonistic effect against phytopathogenic fungi. Such an antagonistic effect against phytopathogenic fungi is seen due to the production of siderophores, antibiotic substances, and extracellular amylase, cellulase, protease, and xylanase enzyme activities. Extracellular enzymes produced by isolated strains were significant, given that they inhibited the growth of phytopathogenic fungi by causing bacteriolysis of the cell wall of plant pathogenic fungi. This is essential to break down the cell wall of plant pathogenic fungi and thus help plant growth by converting macromolecules, which cannot be used by the plant for growth, into small molecules. In addition, they are putative candidates as biological agents to promote plant growth and inhibit growth of phytopathogenic fungi through nitrogen fixation, indole-3-acetic acid production, siderophore production, and extracellular enzyme activity. Therefore, this study suggests the possibility of using Bacillus subtilis ANGa5, Bacillus aerius ANGa25, and Bacillus methylotrophicus ANGa27 as new biological agents, and it is considered that further studies are necessary to prove their effect as novel biological agents by standardization of formulation and optimization of selected effective microorganisms, determination of their preservation period, and crop cultivation tests.

Characterization of Multifunctional Bacillus sp. GH1-13 (복합기능성 Bacillus sp. GH1-13 균주의 특징)

  • Kim, Sang Yoon;Sang, Mee Kyung;Weon, Hang-Yeon;Jeon, Young-Ah;Ryoo, Jae Hwan;Song, Jaekyeong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2016
  • Several microorganisms in particular Bacillus subtilis group have been isolated from diverse places such as soils and the gastrointestinal tract of ruminants etc., and used as biocontrol agent against various plant pathogens and utilized as plant growth promoting agents. Among them, Bacillus is well known as one of the most useful bacteria for biocontrol and plant growth promotion. Bacterium GH1-13 was isolated from a reclaimed paddy field in Wando Island and identified as Bacillus velezensis using phylogenetic analysis on the basis of 16S rRNA and gyrB gene. It was confirmed that GH1-13 produced indole acetic acid (IAA) associated with promoted growth of rice root. GH1-13 showed characteristics of antagonization against the main pathogen of rice as well as diverse pathogenic fungi. GH1-13 had biosynthetic genes, bacillomycin, bacilycin, fengycin, iturin, and surfactin which are considered to be associated closely with inhibition of growth of pathogenic fungi and bacteria. This study showed that GH1-13 could be used as a multifunctional agent for biocontrol and growth promotion of crop.

Strengthening the competitiveness of agricultural biotechnology through practical application of gene editing technology (유전자편집 작물의 개발 현황 및 농업생명공학기술의 국가 경쟁력 강화)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.155-170
    • /
    • 2018
  • In this paper, mechanisms of gene editing technologies including ZFN, TALENS and CRISPR were briefly discussed with mutual advantages and disadvantages. Classification criteria of gene edited, site-directed mutagenesis (SDN) crops for regulatory purpose were also discussed. The number of studies using CRISPR technology was high and studies conducted on Arabidopsis thaliana and rice were highest, followed by tobacco, tomato, wheat, and corn. It has been applied to a variety of plants such as other grain crops, flower crops, vegetable crops, and fruit trees. The number of studies focused on practical application or commercialization in the future were also increasing yearly, and the scope of studies also expanded to include research on metabolic engineering for mass production of useful proteins or substances, development of disease resistant crops against viruses, bacteria, and fungi, abiotic environmental stressresistant crops, and increased yields. In addition to this, it was revealed that application range is becoming more diversified, including the development of parthenocarpic tomatoes, hybrid rice lines using male sterility and increased shattering resistance Brassica napus. It was also revealed that the number of CRISPR gene edited crops permitted by the USDA(APHIS) increases yearly, to be released in the international seed market soon.

Cellular responses and proteomic analysis of hemolytic Bacillus cereus MH-2 exposed to epigallocatechin gallate (EGCG) (Epigallocatechin Gallate (EGCG)에 노출된 용혈성 Bacillus cereus MH-2의 세포 반응 및 프로테옴 분석)

  • Kim, Dong-Min;Park, Sang-Kook;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.260-268
    • /
    • 2016
  • The aim of this work was to investigate the cellular responses and proteomic analysis of Bacillus cereus MH-2 exposed to EGCG. Strain MH-2 was isolated from commercial Ssamjang and has the hemolytic activity. Survival of the MH-2 strain with time in the presence of different concentrations of EGCG under sublethal conditions was monitored. The amount of alginate from MH-2 strain decreased depending on the increasing concentrations of EGCG and increased depending on the exposure time at any particular EGCG concentration. Analysis of SDS-PAGE and Western blot using anti-DnaK and anti-GroEL revealed that two stress shock proteins, 70 kDa DnaK and 60 kDa GroEL were found to decrease in proportion to the EGCG concentration in exponentially growing cultures. Scanning electron microscopic analysis demonstrated the presence of protrusions and fused rod forms on the cells treated with EGCG. 2-DE of soluble protein fractions from MH-2 cultures showed 20 protein spots changed by EGCG exposure. These proteins involved in enterotoxins (hemolysin BL lytic component L1 and hemolysin BL-binding protein), chaperons (DnaK and GroEL), cell defense (peptidase M4 family proteins), and various biosynthesis and energy metabolism were identified by peptide mass fingerprinting using MALDI-TOF. These results provide clues for understanding the mechanism of EGCG-induced stress and cytotoxicity on B. cereus MH-2.

Genotoxicity Study of Litsea japonica Fruit Flesh Extract (까마귀쪽나무열매추출물의 유전독성 평가)

  • Yun, Ji-Hyun;Park, In-Jae;Park, Sung-Hwan;Choi, Goo-Hee;Kim, Hyun-Jung;Cho, Ju-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • This study aimed to evaluate the genotoxicity of Litsea japonica fruit-hexane extract (LJF-HE). In order to examine the genotoxicity, we carried out bacterial reverse mutation assay, chromosome aberration assay, and a micronucleus induction (MN) test according to the OECD and the Korea Ministry of Food and Drug Safety (MFDS) toxicity test guidelines. In the bacterial reverse mutation assay, no significant increase in revertant colonies, nor bacterial toxicity, was observed in the LJF-HE treatment group, regardless of the absence or presence of metabolic activation by the S9 mixture. However, in the positive control group, revertant colony counts were shown to be more than twice that of the negative control group. The chromosome aberration test showed that the repetition rate of abnormal chromosome aberration was less than 5%, regardless of the treatment time, and with or without the S9 mixture. No significant change was observed when (p < 0.05) compared with the negative control group. The micronucleated polychromatic erythrocytes (MNPCE) repetition rate of the polychromatic erythrocytes (PCE) showed no significant changes when compared with the negative control group (p < 0.05). The PCE portion of total erythrocytes also showed no significant changes (p < 0.05). These results showed that LJF-HE had no significant genotoxic effects.

The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds (해양 해면체로부터 분리한 세균으로 항알러지성물질을 생산하는 Bacillus safensis KCTC 12796BP의 유전체 해독)

  • Hanh, Nguyen Phan Kieu;Kim, Soo Hee;Kim, Geum Jin;Choi, Hyukjae;Nam, Doo Hyun
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.448-452
    • /
    • 2018
  • The full genome sequence of Bacillus safensis KCTC 12796BP which had been isolated from the marine sponge in the seawater of Jeju Island, was determined by Pac-Bio next-generation sequencing system. A circular chromosome in the length of 3,935,874 bp was obtained in addition to a circular form of plasmid having 36,690 bp. The G + C content of chromosome was 41.4%, and that of plasmid was 37.3%. The number of deduced CDSs in the chromosome was 3,980, whereas 36 CDS regions were determined in a plasmid. Among the deduced CDSs in chromosome, 81 tRNA genes and 24 rRNA genes in addition to one tmRNA were allocated. More than 30 CDSs for sporulation, 16 CDSs for spore coat, and 20 CDSs for germination were also assigned in the chromosome. Several genes for capsular polysaccharide biosynthesis and for flagella biosynthesis and chemotaxis in addition to genes for osmotic tolerance through glycine-choline betaine pathway were also identified. Above all, the biosynthetic gene cluster for anti-allergic compounds seongsanamides were found among two non-ribosomal peptide synthetase (NRPS) gene clusters for secondary metabolites.