DOI QR코드

DOI QR Code

The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds

해양 해면체로부터 분리한 세균으로 항알러지성물질을 생산하는 Bacillus safensis KCTC 12796BP의 유전체 해독

  • Received : 2018.09.17
  • Accepted : 2018.10.16
  • Published : 2018.12.31

Abstract

The full genome sequence of Bacillus safensis KCTC 12796BP which had been isolated from the marine sponge in the seawater of Jeju Island, was determined by Pac-Bio next-generation sequencing system. A circular chromosome in the length of 3,935,874 bp was obtained in addition to a circular form of plasmid having 36,690 bp. The G + C content of chromosome was 41.4%, and that of plasmid was 37.3%. The number of deduced CDSs in the chromosome was 3,980, whereas 36 CDS regions were determined in a plasmid. Among the deduced CDSs in chromosome, 81 tRNA genes and 24 rRNA genes in addition to one tmRNA were allocated. More than 30 CDSs for sporulation, 16 CDSs for spore coat, and 20 CDSs for germination were also assigned in the chromosome. Several genes for capsular polysaccharide biosynthesis and for flagella biosynthesis and chemotaxis in addition to genes for osmotic tolerance through glycine-choline betaine pathway were also identified. Above all, the biosynthetic gene cluster for anti-allergic compounds seongsanamides were found among two non-ribosomal peptide synthetase (NRPS) gene clusters for secondary metabolites.

제주도 성산리 앞 바다 속 해면체로부터 분리한 Bacillus safensis KCTC 12796BP의 유전체를 분석하였다. 그 결과 3,935,874 bp의 환형 염색체와 36,690 bp의 plasmid 염기 서열을 확인하였다. 염색체는 G + C 함량이 41.4%로 75개의 위유 전자를 포함한 3,980개의 코딩 서열을, plasmid는 G + C 함량이 37.3%로 36개의 코딩 서열을 포함하고 있었다. 염색체 코딩 서열 중에는 81개의 tRNA 유전자, 24개 rRNA 유전자와 1개의 tmRNA 유전자가 있었다. 또한 포자 생성에 필요한 30개의 유전자, 포자피를 지령하는 16개의 유전자, 그리고 발아에 필요한 20개의 유전자도 발견되었다. 이외에 협막 다당체 생합성에 필요한 유전자와 편모 생합성 및 주화성에 필요한 유전자, 그리고 염 내성에 필요한 glycine-choline betaine 수송체에 관한 유전자도 존재하였다. 무엇보다도 항알러지활성을 보이는 이차대사산물 seongsanamide의 생합성을 지령하는 비리보좀성 펩타이드 합성효소 유전자를 확인할 수 있었다.

Keywords

MSMHBQ_2018_v54n4_448_f0001.png 이미지

Fig. 1. The seongsanamide biosynthetic gene cluster of Bacillus safensis KCTC 12796BP.

Table 1. Genome Feature of Bacillus safensis KCTC 12796BP

MSMHBQ_2018_v54n4_448_t0001.png 이미지

Table 2. Amino acid residues lining the binding pocket of each adenylation domain in NRPS gene clusters found in the chromosome of Bacillus safensis KCTC 12796BP

MSMHBQ_2018_v54n4_448_t0002.png 이미지

References

  1. Agrawal S, Adholeya A, and Deshmukh SK. 2016. The pharmacological potential of non-ribosomal peptides from marine sponge and tunicates. Front. Pharmacol. 7, 333.
  2. Bibi F, Faheem M, Azhar EI, Yasir M, Alvi SA, Kamal MA, Ullah I, and Nasser MI. 2017. Bacteria from marine sponges: A source of new drugs. Curr. Drug Metab. 18, 11-15. https://doi.org/10.2174/1389200217666161013090610
  3. Candela T, Mock M, and Fouet A. 2005. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J. Bacteriol. 187, 7765-7772. https://doi.org/10.1128/JB.187.22.7765-7772.2005
  4. Choi H and Oh DC. 2015. Considerations of the chemical biology of microbial natural products provide an effective drug discovery strategy. Arch. Pharm. Res. 38, 1591-1605. https://doi.org/10.1007/s12272-015-0639-y
  5. Eijlander RT, de Jong A, Krawczyk AO, Holsappel S, and Kuipers OP. 2013. SporeWeb: an interactive journey through the complete sporulation cycle of Bacillus subtilis. Nucleic Acids Res. 42, D685-D691.
  6. Guttenplan SB, Shaw S, and Kearns DB. 2013. The cell biology of peritrichous flagella in Bacillus subtilis. Mol. Microbiol. 87, 211-229. https://doi.org/10.1111/mmi.12103
  7. Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, and Bork P. 2008. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, D250-D254.
  8. Kappes RM, Kempf B, and Bremer E. 1996. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J. Bacteriol. 178, 5071-5079. https://doi.org/10.1128/jb.178.17.5071-5079.1996
  9. Kim GJ, Li X, Kim SH, Yang I, Hahn D, Chin J, Nam SJ, Nam JW, Kang H, Nam DH, et al. 2018. Seongsanamides A-D, bicyclic peptides isolated from Bacillus safensis L056 with their antiallergic activities. Org. Lett. doi: 10.1021/acs.orglett.8b03293
  10. Lindequist U. 2016. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther. 24, 561-571. https://doi.org/10.4062/biomolther.2016.181
  11. Liu F, Sun W, Su F, Zhou K, and Li Z. 2012. Draft genome sequence of the sponge-associated strain Bacillus atrophaeus C89, a potential producer of marine drugs. J. Bacteriol. 194, 4454. https://doi.org/10.1128/JB.00835-12
  12. Mondol MAM, Shin HJ, and Islam MT. 2013. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar. Drugs 11, 2846-2872. https://doi.org/10.3390/md11082846
  13. Paul VJ, Ritson-Williams R, and Sharp K. 2011. Marine chemical ecology in benthic environments. Nat. Prod. Rep. 28, 345-387. https://doi.org/10.1039/C0NP00040J
  14. Prieto C, Garcia-Estrada C, Lorenzana D, and Martin JF. 2011. NRPSsp: Non-ribosomal peptide synthase substrate predictor. Bioinformatics 28, 426-427.
  15. Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, and Ianora A. 2017. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar. Environ. Res. 128, 58-69. https://doi.org/10.1016/j.marenvres.2016.05.002
  16. Rottig M, Medema MH, Blin K, Weber T, Rausch C, and Kohlbacher O. 2011. NRPSpredictor2 - a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362-W367. https://doi.org/10.1093/nar/gkr323
  17. Santos-Gandelman JF, Giambiagi-deMarval M, Oelemann WM, and Laport MS. 2014. Biotechnological potential of sponge-associated bacteria. Curr. Pharm. Biotechnol. 15, 143-155. https://doi.org/10.2174/1389201015666140711115033
  18. Stachelhaus T, Mootz HD, and Marahiel M. 1999. The specificityconferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493-505. https://doi.org/10.1016/S1074-5521(99)80082-9
  19. Thomas TRA, Kavlekar DP, and LokaBharathi PA. 2012. Marine drugs from sponge-microbe association--a review. Mar. Drugs 8, 1417-1468.
  20. van Zyl LJ, Matobole R, Biteghe FAN, Klein T, Kirby B, and Trindade M. 2016. Draft genome sequences of three Bacillus species from South African marine sponges. Genome Announc. 4, e00143-16.

Cited by

  1. Peeling the Layers Away: The Genomic Characterization of Bacillus pumilus 64-1, an Isolate With Antimicrobial Activity From the Marine Sponge Plakina cyanorosea (Porifera, Homoscleromorpha) vol.11, pp.None, 2018, https://doi.org/10.3389/fmicb.2020.592735