Evaluation of Antibacterial and Therapeutic Effects of a Sodium salts Mixture against Salmonella typhimurium in Murine Salmonellosis

나트륨 염 복합조성물의 마우스 살모넬라증에 대한 항균 및 치료효과

  • Lee, Yeo-Eun (Department of Environmental Health, Graduate School of Public Health, Gyeongsang National University) ;
  • Cha, Chun-Nam (Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Park, Eun-Kee (Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University) ;
  • Kim, Suk (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • 이어은 (경상대학교 보건대학원 환경보건학과) ;
  • 차춘남 (경상대학교 산업시스템공학부 공학연구원) ;
  • 박은기 (고신대학교 의과대학 인문사회의학교실) ;
  • 김석 (경상대학교 수의과대학 생명과학연구원) ;
  • 이후장 (경상대학교 수의과대학 생명과학연구원)
  • Received : 2011.06.07
  • Accepted : 2011.06.17
  • Published : 2011.09.30

Abstract

Salmonellosis is a major bacterial zoonosis that causes self-limited enteritis to fatal infection in animals and food-borne infection and typhoid fever in humans. Multidrug-resistant strains of Salmonella spp. has increased over the last several decades and recently causes more serious problems in public health. The present study was investigated bacteriocidal effects of sodium chlorate, sodium azide, sodium cyanide, and sodium salts mixture containing sodium chlorate, sodium azide, and sodium cyanide on infection with S. typhimurium in macrophage RAW 264.7 cells, and antibacterial effects of sodium salts mixture for murine salmonellosis. In infection assay of S. typhimurium in RAW 264.7 cells, bacterial survival rates within macrophage in all treated groups was significantly reduced comparing to that of the control group with the passage of incubation time. Administration of sodium salts mixture showed a therapeutic effect for S. typhimurium infected ICR mice. The mortality of mice treated with sodium salts mixture was 70% until 12 days, while that of control mice was 100% until 9 days after S. typhimurium infection. The results of this study strongly indicate that sodium salts mixture has a potency treatment for murine salmonellosis.

본 연구는 세포 내 기생세균인 S. typhimurium의 세포 내 대사과정에서 중요한 역할을 하는 respiratory nitrate reductase의 활성 및 활성 억제 물질인 sodium chlorate, sodium azide, 그리고 sodium cyanide으로 조성된 복합조성물을 이용하여 RAW 264.7 세포에 감염 된 S. typhimurium의 증식억제 효과와, S. typhimurium 감염 마우스에 대한 치료효과를 평 가하기 위하여 수행되었다. 복합조성물을 이용하여 RAW 264.7 세포 감염 S. typhimurium에 대한 증식억제 효과 확인시험을 수행한 결과, 세포 배양 24시간에 대조군과 비교하여 90% 이상의 S. typhimurium의 증식이 억제되었다. 또한, S. typhimurium을 감염시킨 마우스에 복합조성물을 투여한 결과, 70%의 높은 생존율을 보였다. 따라서 본 연구의 결과로부터, sodium chlorate, sodium azide, sodium cyanide로 조성된 복합조성물을 S. tyhimurium에 감염된 마우스에 투여할 경우 S. typhimurium의 증식을 억제하여 감염증상을 치료할 수 있을 것으로 기대된다.

Keywords

References

  1. Cleaveland, S., Laurenson, M.K. and Taylor, L.H.: Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos. Trans. R. Soc. Lond B. Biol. Sci. 356, 991-999 (2001). https://doi.org/10.1098/rstb.2001.0889
  2. Kim, G.S., Kim, D.H., Lim, J.J., Lee, J.J., Han, D.Y., Lee, W.M., Jung, W.C., Min, W.G., Won, C.G., Rhee, M.H., Lee, H.J. and Kim, S.: Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen Salmonella within the raw 64.7 macrophage. Biol. Pharm. Bull. 31, 2012-2017 (2009).
  3. Kim, D.H., Lim, J.J., Lee, J.J., Jung, W.C., Shin, H.J., Lee, H.J., Kim, G.S. and Kim, S.: Antibacterial and therapeutic effects of houttuynia cordata ethanol extract for murine salmonellosis. Kor. J. Environ. Agricul. 27, 156-162 (2008). https://doi.org/10.5338/KJEA.2008.27.2.156
  4. Valle, E. and Guiney, D.G.: Characterization of salmonellainduced cell death in human macrophage-like THP-1 cells. Infect. Immun. 73, 2835-2840 (2005). https://doi.org/10.1128/IAI.73.5.2835-2840.2005
  5. 김동혁, 이진주, 임정주, 김대근, 김곤섭, 이후장, 민원기, 이만휘, 장홍희, 김석. 삼백초 수용성 추출물의 Salmonella typhimurium 균에 대한 항균 및 숙주세포 내 사명 효과 규명. 농업생명과학연구, 46, 111-119 (2011)
  6. 식품의약품안전청. 축산용 항생제 관리시스템 구축. 식품의약품안전청, 서울, pp. 19-93 (2006).
  7. Lee, M.H., Lee, H.J. and Ryu. P.D.: Public health risks: Chemical and antibiotic residues. Asian-Aust. J. Anim. Sci. 14, 402- 413 (2001).
  8. Mah, M.W. and Memish, Z.A.: Antibiotic resistance. An impending crisis. Saudi Med. J. 21, 1125-1129 (2000).
  9. Prescott, J.F. Antimicrobial use in food and companion animals. Anim. Health Res. Rev. 9, 127-133 (2008). https://doi.org/10.1017/S1466252308001473
  10. Gould, I.M. The epidemiology of antibiotic resistance. Int. J. Antimicrob. Agents 32(Suppl. 1), S2-9 (2008).
  11. Ruiz, J., Capitano, L., Nunez, L., Castro, D., Sierra, J.M., Hatha, M., Borrego, J.J. and Vila, J.: Mechanisms of resistance to ampicillin, chloramphenicol and quinolones in multiresistant Salmonella typhimurium strains isolated. J. Antimicrob. Chemother. 43, 699-702 (1999). https://doi.org/10.1093/jac/43.5.699
  12. 참여연대: 축.수산 동물약품(항생제) 실태 보고서 I, 참여 연대, 서울, pp. 11-21 (2005).
  13. 이연옥, 정원철, 차춘남, 김곤섭, 이여은, 김석, 이후장. 한약재 복합추출물과 점토광물질 혼합제의 Escherichia coli H:157:H7에 대한 항균효과. 한국식품위생안전성학회지, 25, 1-5 (2010).
  14. Kong, B., Wang, J. and Xiong, Y.L. Antimicrobial activity of several herb and spice extracts in culture medium and in vacuum- packaged pork. J. Food Prot. 70, 641-647 (2007).
  15. Chattopadhyay, D., Maiti, K., Kundu, A.P., Chakraborty, M.S., Bhdra, R., Mandal, S.C. and Mandal, A.B. Antimicrobial activity of Alstonia macrophylla: a folklore of bay islands. J. Ethnopharmacol. 77, 49-55 (2001). https://doi.org/10.1016/S0378-8741(01)00264-1
  16. Bravo, M.V., Bunout, D., Leiva, L., de la Maza, M.P., Barrera, G., de la Maza, J. and Hirsch, S. Effect of probiotic Saccharomyces boulardii on prevention of antibiotic-associated diarrhea in adult outpatients with amoxicillin treatment. Rev. Med. Chil. 136, 981-988 (2008).
  17. Collado, M.C., Isolauri, E., Salminen, S. and Sanz, Y. The impact of probiotic on gut health. Curr. Drug Metab. 10, 68-78 (2009). https://doi.org/10.2174/138920009787048437
  18. Scazzocchio, F., D'Auria, F.D., Alessandrini, D. and Pantanella, F. Multifactorial aspects of antimicrobial activity of propolis. Microbiol. Res. 161, 327-333 (2006). https://doi.org/10.1016/j.micres.2005.12.003
  19. Mani, F., Damasceno, H.C., Novelli, E.L., Martins, E.A. and Sforcin, J.M. Propolis: Effect of different concentrations, extracts and intake period on seric biochemical variables. J. Ethnopharmacol. 105, 95-98 (2006). https://doi.org/10.1016/j.jep.2005.10.011
  20. Smith, D.J., Oliver, C.E., Shelver, W.L., Caesar, T. and Anderson, R.C.: Chlorate metabolism in pure cultures of Escherichia coli O157:H7 pretreated with either nitrate or chlorate. J. Agric. Food Chem. 57, 10216-10224 (2009). https://doi.org/10.1021/jf901513f
  21. Anderson, R.C., Callaway, T.R., Buckley, S.A., Anderson, T.J., Genovese, K.J., Sheffield, C.L. and Nisbet, D.J.: Effect of oral sodium chlorate administration on Escherichia coli O157:H7 in the gut of experimentally infected pigs. Int. J. Food Microbiol. 71, 125-130 (2001). https://doi.org/10.1016/S0168-1605(01)00562-1
  22. Anderson, R.C., Buckley, S.A., Kubena, L.F., Stanker, L.H., Harvey, R.B. and Nisbet, D.J.: Bactericidal effect of sodium chlorate on Escherichia coli O157:H7 and Salmonella typhimurium DT104 in rumen contents in vitro. J. Food. Prot. 63, 1038- 1042 (2000).
  23. Patchanee, P., Crenshaw, T.D. and Bahnson, P.B.: Oral sodium chlorate, topical disinfection, and younger weaning age reduce Salmonella enterica shedding in pigs. J. Food Prot. 70, 1798- 1803 (2007).
  24. Brian, J.N.J., Lee, J.A., Luis, M.R., Clare, J.T., Clive, S.B., Enrique, F., Antonia, H., Julea, N.B. and David, J.R.: Tuning a nitrate reductase for function. J. Biol. Chem. 279, 32212- 32218 https://doi.org/10.1074/jbc.M402669200
  25. Afshar, S., Johnson, E., de Vries, S. and Schröder, I.: Properties of a thermostable nitrate reductase from the hyperthermophilic Archaeon Pyrobaculum aerophilum. J. Bacteriol. 183, 5491- 5495 (2001). https://doi.org/10.1128/JB.183.19.5491-5495.2001
  26. Bertero, M.G., Rothery, R.A., Palak, M., Hou, C., Lim, D., Blasco, F., Weiner, J.H. and Strynadka, N.C.J.: Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat. Struct. Biol. 10, 681-687 (2003). https://doi.org/10.1038/nsb969
  27. Helliwell, M. and Nunn, J.: Mortality in sodium chlorate poisoning. Br. Med. J. 1, 1119-1121 (1979).
  28. Merck Index: Sodium chlorate, 12th ed. (S. Budavari, Ed.), Merck & Company, White House Station, New Jersey, pp. 1473-1474 (1996).
  29. Chefetz, B., Stimler, K., Shechter, M. and Drori, Y.: Interactions of sodium azide with triazine herbicides: Effect on sorption to soils. Chemosphere 65, 352-357 (2006). https://doi.org/10.1016/j.chemosphere.2006.03.006
  30. Hebert, C.D.: NTP technical report on toxicity studies of sodium cyanide. National Institutes of Health, Maryland, pp. 7-9 (1993).
  31. Jung, W.C., Cha, C.N. and Lee, H.J.: Antibacterial effects of Mume Fructus water extract against Salmonella typhimurium in murine salmonellosis. Kor. J. Env. Hlth. 35, 362-364 (2009).
  32. Anton, P.A., Kemp, J.A., Butler, T. and Jacobs, M.R.: Comparative efficacies of ceftriaxone, moxalactam, and ampicillin in experimental Salmonella typhimurium infection. Antimicrob. Agents Chemother. 22, 312-315 (1982). https://doi.org/10.1128/AAC.22.2.312