• Title/Summary/Keyword: 성장변형률법

Search Result 11, Processing Time 0.029 seconds

Application of the Growth-Strain Method for Shape Optimization (형상 최적화를 위한 성장-변형률법의 적용)

  • 이경래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.27-34
    • /
    • 1999
  • The growth-strain method was used for shape optimization, which carries out the optimization by distributing uniformly the distributed parameter such as von Mises stress and shear strain energy density. Shape optimization is carried out by iteration of stress analysis and growth strain analysis. In this study, the effect of growth ratio in the method was investigated and then the range of the adequate value of the growth ratio was determined. Also the growth-strain method was improved by applying the linear PID control theory in order to control volume required by a designer. Finally, an automatic shape optimization system was built up by the improved growth-strain method with a commercial software using finite element method. The effectiveness and practicability of the developed shape optimization system was verified by some examples.

  • PDF

Reliability-based Shape Optimization Using Growth Strain Method (성장-변형률법을 이용한 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the growth-strain method. An actual design involves uncertain conditions such as material property, operational load, Poisson's ratio and dimensional variation. The purpose of the RBSO is to consider the variations of probabilistic constraint and performances caused by uncertainties. In this study, the growth-strain method was applied to shape optimization of reliability analysis. Even though many papers for reliability-based shape optimization in mathematical programming method and ESO (Evolutionary Structural Optimization) were published, the paper for the reliability-based shape optimization using the growth-strain method has not been applied yet. Growth-strain method is applied to performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints in the change of average mises stress. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization. It was verified that the reliability-based shape optimization using growth-strain method are very effective for general structure. The purpose of this study is to improve structure's safety considering probabilistic variable.

The Application of the Growth-Strain Method to the Shape Optimization of the Flow System (유동시스템의 형상 최적화에 성장-변형률법의 적용)

  • Maeng, Joo-Sung;Han, Seog-Young;Kim, Jong-Pill
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.533-538
    • /
    • 2001
  • In general, shape optimization design of the flow system has done to obtain the effects, which are required in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. But, in empirical analysis case, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method case, it usually needs many design parameters, because of the required object-function. In this paper, we present a newly numerical analysis, the growth-strain method having only one design parameter. That optimizes a shape by distributing a design parameter such as dissipation energy to be uniformed in the flow system. Also, we apply this shape design process to the three-flow systems, and then we identify that the resulting shape approaches the known optimal shape in the numerical values. Consequently, we confirm that the proposed method is very efficient and practical in the shape optimization of the flow system.

  • PDF

Application of the Growth-Strain Method for Shape Optimal Design of a Flow System (유동 시스템의 형상 최적 설계를 위한 성장-변형률법의 적용)

  • Han, Seog-Young;Lee, Sang-Hwan;Kim, Jong-Pill;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.945-950
    • /
    • 2002
  • Shape optimization of a flow system is done to obtain the required effects, in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. In empirical analysis, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method, it usually needs much calculation expenses for shape optimization, because of design sensitivity analysis. In this study, we used the growth-strain method having only one distributed parameter such as a design variable. It optimizes a shape by making a distributed parameter such as dissipation energy uniform in a flow system, and then applied to two-flow systems. In order to overcome the stability occurred in numerical analysis performed by Azegami, the equation of volumic strain has been modified. Also, the shapes were compared with the known optimal shapes for the flow systems. Consequently, we confirm that the modified growth-strain method is very efficient and practical in shape optimization of the flow systems.

Shape Optimization for Opening Mode in Fracture Mechanics (열림 모드에 대한 형상 최적화)

  • 한석영;송시엽
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.40-45
    • /
    • 2001
  • The relationship between structural geometry and number of life cycles to failure is investigated to improve the fatigue life of structural components. The linear elastic fracture mechanics(LEFM) approach is integrated with shape optimal design methodology. The primary objective of this study is to decide an optimal shape for enhancing the life of the structure. The results from LEFM analyses are used in the fatigue model to predict the life of the structure before failure is occurred. The shape of the structure is optimized by using the growth strain method. Relevant issues such as problem formulation, finite element modeling are explained. Three design examples are solved, and the results show that, with proper shape changes, the life of structural systems subjected to fatigue loads can be enhanced significantly.

  • PDF

Shape Optimization of Cutouts in a Laminated Composite Plate Using Volume Control (체적제어에 의한 적층 복합재 구멍의 형상 최적화)

  • Han, Seog-Young;Ma, Young-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1337-1343
    • /
    • 2004
  • Shape optimization was performed to obtain a precise shape of cutouts including the internal shape of cutouts in a laminated composite plate by three dimensional modeling using solid element. Volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. It makes Tsai-Hill failure index at each element uniform in laminated composites under the predetermined volume a designer requires. Shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study; (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure indices of the optimal shapes were remarkably reduced comparing with those of the initial shapes.

Development of Shape Optimization System using Stress Control (응력 제어를 통한 형상 최적화 시스템 개발)

  • 한석영;배현우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.52-58
    • /
    • 1999
  • In this study, the growth-strain method was used for shape optimization. The adequate value of growth ratio in the method was used the value obtained by volume control. And the linear PID control theory was applied to control internal stresses by stresses required by a designer. The effect of the values of $K_{P}$, $K_{I}$, and $K_{D}$ was investigated and the adequate values of $K_{P}$, $K_{I}$, and $K_{D}$ were determined empirically. Finally, a shape optimal design system was built up by the improved the growth-strain method with a commercial software I-DEAS. The effectiveness and practicality of the developed shape optimal design system was verified by some examples.les.les.les.

  • PDF

Shape Optimization of Structures in Opening Mode (열림 파괴양식에 대한 구조물의 형상 최적화)

  • 한석영;송시엽
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for three types of specimens, which are very typical ones in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was concluded that shapes of three types of specimens optimized by the growth-strain method prolong their fatigue lives very much.

Shape Optimization for Multi-Connected Structures (다연결체 구조물에 대한 형상 최적화)

  • 한석영;배현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • The growth-strain method was used for shape optimization of multi-connected structures. It was verified that the growth-strain method is very effective for shape optimization of structures with only one free surface to be deformed. But it could not provide reasonable optimized shape for multi-connected structures, when the growth-strain method is applied as it is. The purpose of this study is to improve the growth-strain method for shape optimization of multi-connected two- and three- dimensional structures. In order to improve, the problems that occurred as the growth-strain method was applied to multi-connected structures were examined, and then the improved method was suggested. The effectiveness and practicality of the developed shape optimization system was verified by numerical examples.

  • PDF

Shape Optimization for Prolonging Fatigue Life of a Structure (구조물의 피로수명 향상을 위한 형상 최적화)

  • Han, Seok-Yeong;Song, Si-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1512-1519
    • /
    • 2002
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization fer two types of specimens, which are very typical ones in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. Also shape optimization for a cantilever beam in mixed mode was carried out by the same techniques. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was found that shapes of two types of specimens and a cantilever beam optimized by the growth-strain method prolong their fatigue lives significantly. Therefore, it was verified that the growth-strain method is an appropriate technique for shape optimization of a structure having a crack.