• 제목/요약/키워드: 섬유강화유리플라스틱

검색결과 104건 처리시간 0.033초

FRP에서 와인딩 각도에 따른 압축강도의 시뮬레이션과 특성평가 (Simulation and Evaluation of Compressive Strength of FRP According to the Winding Orientation of Glass Fiber)

  • 박효열;강동필;한동희;김인성;표현동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2000
  • The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. Unidirectional FRP made by pultrusion method has comparatively lower compressive strength than tensile strength. Compressive strength of unidirectional FRP may be increased by filament winding layer which has tensile stress when compressive stress was loaded. In this study, compressive strength and stresses of FRP rods were simulated according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method. Simulated value and real evaluated compressive strength were compared to investigate stresses which is prominent to the fracture of FRP. The shear stresses had a great effect on the strength of FRP although the stress of parallel direction of FRP was much higher.

  • PDF

복합재 패치로 보수된 노치형 알루미늄 합금 평판의 음향방출 특성 (Acoustic Emission Characteristics of Notched Aluminum Plate Repaired with a Composite Patch)

  • 윤현성;최낙삼
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.53-61
    • /
    • 2011
  • 본 연구는 편측 노치가 삽입된 A16061-T6 알루미늄 합금 평판 시편에 대해 유리섬유강화플라스틱(GFRP) 복합재 패치의 적층수를 변수로 하여 보수히고, 인장 하중에 따른 시편의 손상 과정을 음향방출법(acoustic emission, AE)으로 실시간 분석하였다. AE 에너지 발생률(AE energy rate), hit 발생률(hit rate), AE 진폭(AE amplitude) 거통과 파형 및 1차 중심주파수(1st peak frequency)의 대역을 조사하여, 시편 파괴시 알루미늄 크랙(Al cracking), 섬유 파단(fiber breakage), 수지 균열(resin cracking), 층간 분리(delamination)로 분류하였다. 시편의 변위를 음향방출 특성에 따라 구간(region) I, II, III으로 나눌 수 있었으며, 패치 자체가 실제 파괴되는 구간인 구간 II를 세부적으로 분석하여 패치의 적층수에 따른 AE 특성 차이를 구하였다.

유리섬유강화플라스틱 복합집성재의 접착성능 (Bonding Performance of Glulam Reinforced with Glass Fiber-Reinforced Plastics)

  • 박준철;신윤종;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권4호
    • /
    • pp.357-363
    • /
    • 2009
  • 본 연구에서는 작업성과 경제성을 고려하여 집성재 제작용 접착제를 목재와 유리섬유강화플라스틱(GFRP: Glass fiber reinforced plastic) 접착에 적용할 수 있는지를 검토하였다. 복합집성재는 접착제 종류와 혼합비에 따라 6가지 타입으로 제작하여 블록전단강도시험과 침지박리, 삶음박리 시험을 실시하였다. 레조시놀수지 접착제와 초산비닐 수지접착제, 에폭시수지 접착제를 사용한 복합집성재 3가지 타입과 레조시놀수지 접착제와 초산비닐수지 접착제를 혼합한 3가지 타입으로 총 6가지 타입으로 제작하였다. 블록전단시험 결과 모든 타입의 복합집성재가 KS F 3021 기준 $7.1N/mm^2$ 보다 높아 전단강도는 양호하였지만, 목파율에서는 초산비닐수지접착제가 65.9%로 가장 우수한 접착 성능을 나타내었다. 박리시험에서는 초산비닐수지 접착제를 사용한 경우 GFRP 접착층까지 포함된 경우 침지 박리는 1.08%, 삶음박리는 4.16%로 KS F 3021 합격기준인 5% 이하를 만족하였다. 레조시놀수지 접착제만을 사용 한 경우 목재 접착층은 침지박리 1.26%, 삶음박리 0%로 합격기준을 만족하였으나 GFRP 접착층을 포함시킬 경우 침지박리는 21.85%로 합격기준을 만족하지 못하였고 삶음박리의 경우만 1.45%로 만족하였다.

섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구 (A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP)

  • 김경진;엄상용;김기환
    • 한국화재소방학회논문지
    • /
    • 제33권3호
    • /
    • pp.21-28
    • /
    • 2019
  • 본 연구에서는 섬유강화 열가소성 플라스틱 복합재료(Fiber Reinforced thermo plastics, FRTP)의 기계적 특성 및 화재 위험성 예측을 위한 연소특성을 평가하였다. 폴리카보네이트와 나일론에 섬유강화재로 유리섬유와 탄소섬유를 각각 0~40 wt% 혼합하여 특성변화를 실험한 결과, 섬유강화재의 함유율이 증가할수록 비강도와 열변형 온도가 증가하였고 난연성은 유리섬유 함유율이 30 wt% 이상인 경우 V-0 등급을 보였다. 연소특성의 경우 섬유강화재의 함유율이 증가함에 따라 착화시간도 비례하여 증가하였으며, 최대 열방출율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 51%, 나일론은 약 24% 수준으로 낮아졌다. CO 발생율은 일정시간까지 감소하다가 증가하는 경향을 보이며, 이는 시간이 지남에 따라 불완전연소에 의한 것으로 판단된다. CO2 발생율은 열방출율과 매우 유사한 경향을 보이며, 최대 CO2 발생율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 50%, 나일론은 약 28% 수준으로 낮아졌다.

유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구 (Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber)

  • 지현욱;;유성수;강정희
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계 (Laminate Weight Optimization of Composite Ship Structures based on Experimental Data)

  • 오대균;;노재규;정숙현
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

GFRP 낚시어선의 선체구조 적층판 분석과 경량화 설계 (Light-weight Optimum Design of Laminate Structures of a GFRP Fishing Vessel)

  • 장재원;;오대균
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.495-503
    • /
    • 2019
  • Approximately 90,000 ships are registered in South Korea, and about 80,000 of these ships are used in domestic shipping. Among these, 84% are small ships, such as a fishing vessels that weigh less than 20 tons and are made mostly of an FRP (Fiber Reinforced Plastics). When this fact is taken into account, the greenhouse gas emissions that are released per ton of a composite vessel are sizeable. In this study, the laminated structures of an FRP fishing vessel, many of which currently are being built in Korea, were analyzed by ISO (International Organization for Standardization) and international design rules, and the structures of the hulls are lightweight with optimum glass fiber mass content as determined by the laminate weight minimization algorithm. As a result, it was confirmed that the laminations of the vessels in accordance with the Korean rule could have 6.4% to approximately 11% more design margin compared to the requirements of ISO and other international rules. And the case study of the application of the laminate weight minimization algorithm showed the possibility of reducing the weight of the hull bottom plating by as much as about 19.32% and by as much as about 18.06% in the overall structure.

F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책 (Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P)

  • 정정호;유승엽;이평직;전진용;조아형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF

복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구 (An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics)

  • 손충렬;변효인;백진성;신종연;이정탁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.846-851
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S(Wind turbine System) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program (ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer. For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

  • PDF