DOI QR코드

DOI QR Code

A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP

섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구

  • 김경진 ((주)정평이앤씨) ;
  • 엄상용 (LG사이언스파크 안전환경센터) ;
  • 김기환 (한국소방안전원 정책연구소)
  • Received : 2018.10.10
  • Accepted : 2019.05.21
  • Published : 2019.06.30

Abstract

To examine the mechanical and combustion characteristics of FRTP, either polycarbonate or nylon were used as a matrix, and either glass fiber or carbon fiber were used as the fiber reinforcement. The fiber reinforcement content was differentiated at 0~40 wt%. The tensile strength and heat distortion temperature increased with increasing reinforcement content. When the fiber reinforcement content was above 30 wt%, the flammability rating showed V-0. As the fiber reinforcement content increased from 0 to 40 wt%, the peak heat release rate of polycarbonate decreased by approximately 51% and that of nylon decreased by approximately 24%. The rate of CO generation decreased for a period of time, and then increased. This appears to have resulted from incomplete combustion. The rate of CO2 generation shows a similar tendency with the heat release rate. As fiber reinforcement content levels increased from 0 to 40 wt%, the CO2 peak rate of polycarbonate generation decreased by approximately 50% and that of nylon decreased by 28%.

본 연구에서는 섬유강화 열가소성 플라스틱 복합재료(Fiber Reinforced thermo plastics, FRTP)의 기계적 특성 및 화재 위험성 예측을 위한 연소특성을 평가하였다. 폴리카보네이트와 나일론에 섬유강화재로 유리섬유와 탄소섬유를 각각 0~40 wt% 혼합하여 특성변화를 실험한 결과, 섬유강화재의 함유율이 증가할수록 비강도와 열변형 온도가 증가하였고 난연성은 유리섬유 함유율이 30 wt% 이상인 경우 V-0 등급을 보였다. 연소특성의 경우 섬유강화재의 함유율이 증가함에 따라 착화시간도 비례하여 증가하였으며, 최대 열방출율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 51%, 나일론은 약 24% 수준으로 낮아졌다. CO 발생율은 일정시간까지 감소하다가 증가하는 경향을 보이며, 이는 시간이 지남에 따라 불완전연소에 의한 것으로 판단된다. CO2 발생율은 열방출율과 매우 유사한 경향을 보이며, 최대 CO2 발생율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 50%, 나일론은 약 28% 수준으로 낮아졌다.

Keywords

References

  1. M. W. Hong, "Engineering Plastics Handbook", Gijeon Ltd., Seoul, Korea (2007).
  2. U. Berardi and N. Dembsey, "Thermal and Fire Characteristics of FRP Composites for Architectural Applications", Polymers, Vol. 7, pp. 2276-2289 (2015). https://doi.org/10.3390/polym7111513
  3. RY. Chen, SX. Lu, CH. Li and SM. Lo, "Experimental Study on Ignition and Combustion Characteristics of Fiber-Reinforced Phenolic Composite", Fire and Materials, Vol. 38, pp. 409-417 (2016). https://doi.org/10.1002/fam.2191
  4. J. Czarnowski, "FRP Thermal Properties and Fire Performance for Building Exterior Applications", A Major Qualifying Project Report to the Faculty of the Worcester Polytechnic Institute (2013).
  5. K. W. Lee, K. E. Kim and D. H. Lee, "Combustion Characteristics of Fiber Reinforced Plastic by Cone Calorimeter", Transaction of Korean Institute of Fire Science & Engineering, Vol. 18, No. 2, pp. 68-72 (2004).
  6. K. W. Lee and K. E. Kim, "Fire Characteristics of Plastic Insulation Materials from Cone Calorimeter Test", Transaction of Korean Institute of Fire Science & Engineering, Vol. 17, No. 1, pp. 76-83 (2003).
  7. K. W. Lee, K. E. Kim and G. N. Lee, "Combustion Characteristics of Thermoplastic by Cone Calorimeter", Theories and Applications of Chem. Eng., Vol. 10, No. 1, p. 1083 (2004).
  8. KS F ISO 5660-1, "Reaction to Fire Test - Heat Release, Smoke Production and Mass Loss Rate - Part 1" (2018).