• Title/Summary/Keyword: 선형 곡률

Search Result 144, Processing Time 0.024 seconds

Generalization of the Stream Network by the Geographic Hierarchy of Landform Data (지형자료의 계층화를 이용한 하계망 일반화)

  • Kim Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.4 s.109
    • /
    • pp.441-453
    • /
    • 2005
  • This study aims to generalize the stream network developing algorithm of the geographic hierarchy Stream networks with hierarchy system should be spatially hierarchized in linear features. The generalization procedure of the stream networks are composed of the hierarchy of stream, selection and elimination, and algorithm. Working of stream networks is composed by the decision of direction on stream networks, ranking of stroke segments, and ordering by the strahler method, using geographic data query for controlling selection and elimination of the linear feature by scale. Improved Simoo algorithm was effective in enhancement and decreasing curvature of linear features. Resultantly, it is expected to improve generalization of features with various spatial hierarchy.

A Study on The Construction of 3-Dimensional Edge Blend Surface Modeling (곡면 모델링에서 3차원 경계 곡면 블렌드 구성에 관한 연구)

  • 이창억
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 1994
  • It is very difficult to partially describe the hull shape made up of 3-dimensional free form surface. With computerizing skill in ship design, the geometric modeling technique has been developed. In hull shape modeling, the blending technique has not yet been adapted to the hull shape surface has a variable curvature. By adapting the blend surface, small surface on drawing plane is to be softly blended with given hull surface and a projecting part. This study has adapted to the ship design one of the blending methods by which offsets data of the blend surface can be obtained by the input of blend radius on two base surfaces.

  • PDF

A Study on the Assessment of Blind Spot Detection for Road Alignment (도로 선형에 따른 사각지역 감시장치 평가에 관한 연구)

  • Lee, Hongguk;Park, Hwanseo;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Recently, in order to reduce traffic accident related fatalities, increasing number of studies are conducted regarding the vehicle safety enhancement devices. But very few studies about test procedures and requirements for vehicle safety systems are being carried out. Since BSD, as one of the most important safety features, is installed on a new vehicle, its performance test method has to be evaluated. Independent factors irrelevant to the device types including collision position, vehicle speed and closing speed are used to calculate test distance away from the current vehicle. Effect of roadway geometry as radius of curvature is introduced to propose possible misjudgement of following vehicle as adjacent one. The study results would be utilized to enhance the test procedure of BSD performance.

Analysis of Propagation Characteristics of Transient Acoustic Fields in biological Media (생체 중 선형 배열 탐촉자의 과도음장 전파 특성 해석)

  • Park Eun-Ju;Ha Kang-Lyeol;Kim Moo-Joon;Kim Dong-Hyeon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.205-208
    • /
    • 2001
  • 기존 의료용 초음파 진단장치에 사용되고 있는 선형 배열 탐촉자를 대상으로, 과도음장의 전파특성을 해석하고, 음장 변화에 민감하게 영향을 미치는 구동 펄스의 형태 및 탐촉자의 요소의 크기(element width), 곡률반경(Radius of curvature), 초점길이(focal length) 등 구조적인 변화에 따른 과도음장 전파 특성의 변화 양상을 시뮬레이션을 통해 체계적으로 해석하였다. 나아가, 매질이 간, 근육, 지방 등의 생체 조직인 경우의 음장 변화 특성을 비교 분석하였다.

  • PDF

Application of Numerical Differentiation Using Differential Quadrature (DQ) to Curved Member-like Structural Analysis (곡선부재의 구조해석에서 미분구적(DQ)을 이용한 수치미분의 적용)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.185-193
    • /
    • 2007
  • This paper deals with the application of the numerical differentiation using the differential quadrature(DQ) in the curved member-like structural analysis. Derivative values of the geometry of structure are definitely needed for analyzing the structural behavior. For verifying the numerical differentiation using DQ, free vibration problems of arch are selected. Terms of curvature composed with the derivatives of arch geometry obtained herein are agreed quite well with exact values obtained explicitly. Natural frequencies subjected to terms of curvature obtained by DQ are agreed quite well with those in the literature. The numerical differentiation using DQ can be practically utilized in the structural analysis.

Response Characteristics of the Steel Moment Resisting Frame According to the Stiffness Variation of Pontoo (플로팅 함체의 강성변화에 따른 철골모멘트연성골조의 응답 특성)

  • Lee, Young-Wook;Park, Jeong-Ah;Chae, Ji-Yong;Choi, Ji-Hun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • To examine the interaction of the floating pontoon with a steel moment resisting frame, the static structural analysis is carried out, in which the pressure load are calculated from the forgoing fluid dynamic analysis, varying the period of wave from 3 to 15 second and for 3 cases of depth of pontoon, 1.5, 2.0, 2.5m. As results, it has shown that RAO-pitch has the linear relationship with the increase of moment of the frame and the curvature of pontoon is reversely proportional to the stiffness of pontoon. By synthesizing these results, an estimation method is proposed, which predicts the moment of frame of the different depth of pontoon based on the analysis result of an arbitrary depth of a floating pontoon. The estimation result shows considerably good agreement, compared with the analysis result.

Temperature-Induced Stresses and Deformation in Composite Box Girder Bridges (합성 박스형 교량의 온도에 의한 응력 및 변형)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.659-672
    • /
    • 1997
  • Thermal response induced from nonlinear temperature distribution in composite box gilder bridges depends on several variables(environmental conditions, physical and material properties, location and orientation of bridge, and cross-section geometry). In this paper, parametric study are conducted in order to find the effects of variations of seasons, location and orientation of bridge, sectional geometry and some material properties on the axial deformation, curvature and stresses in composite box girder bridge. A two-dimensional transient finite element model to conduct this parametric studies is briefly presented. Firstly, the effects of the parameters on the diurnal variation of curvature are considered, and for the time of maximum curvature, on the distribution of temperature and stresses of composite box girder sectional are considered. Finally, some considerations about the influence of the parameters on the daily maximum values of axial deformation, curvature and stresses are carried out. The influence of thermal effect on structures is important as much as the influence of live or dead load in some cases. In the design of steel composite bridges, the thermal stresses calculated on the supposition that the temperature difference between the concrete slab and steel girder is $10^{\circ}C$ and the temperature distributions are uniform in concrete slab and steel girder can be underestimated.

  • PDF

Modeling and Parametric Studies on Moment-Curvature Relation of a Reinforced Concrete Column Subject In Axial-toad and Bi-Axil Moment (축하중과 이축모멘트를 받는 철근콘크리트 기둥의 모멘트-곡률에 관한 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실;김성진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.677-688
    • /
    • 2002
  • A analytical model is developed which can simulate a complete inelastic biaxial moment-curvature relations of a reinforced concrete column. The model can simulate sudden drop in moment capacity after peak moment and due to spalling of cover concrete. Parametric studies are performed examine the effects of constituent material properties as well as topological arrangement of reinforcements on moment-curvature relations and P-M interaction curve. It has been analytically observed that ductility of a reinforced concrete column is influenced mostly by magnitude of the axial load and spacings or the volume of lateral reinforcements. Compared to ACI P-M interaction curve, overall increase about 10% in square root of sum of squares of axial force and moment, and about 20% in peak load are observed for the columns reinforced according to ACI seismic design code.

Flexural Strength of Composite HSB Hybrid Girders in Positive Moment (HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 2011
  • The flexural strength of composite HSB hybrid I-girders under positive moment is investigated by the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specification to such girders. The hybrid girders are assumed to have the top flange and the web fabricated from HSB600 steel and the bottom flange made of HSB800 steel. More than 6,200-composite I-girder sections that satisfy the section proportion limits of AASHTOL RFD specifications are generatedby the random sampling technique to consider a statistically meaningful wide range of section properties. The flexural capacities of the sections are calculated by the nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels are modeled as an elastoplastic, strain-hardening material and the concrete as CEB-FIP model. The effects of ductility ratio and compressive strength of concrete slab on the flexural strength of composite hybrid girders make of HSB steels are analyzed. Numerical results indicated that the current AASHTO-LRFD equation can be used to calculate the flexural strength of composite hybrid girders fabricated from HSB steel.

A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate (화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구)

  • Kim, Kyung-Ho;Kim, Tae-Kwon;Park, Jeong;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Flame propagation velocity is the one ofmainmechanismof the stabilization of triple flame. To quantify the triple flame propagation velocity, Bilger presents the triple flame propagation velocity depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there was not presented any relation of these variables, triple flame propagation velocity, radius of flame curvature and scalar dissipation rate indirectly. In the present research, we have checked the results of numerical simulation with experiment and numerical analysis and verified the flame propagation velocity with a scalar dissipation rate proposed by Bilger through the numerical simulation. Also we have clarified that flame propagation velocity was depended on the radius of flame curvature and scalar dissipation rate.