• Title/Summary/Keyword: 선박에너지효율

Search Result 175, Processing Time 0.025 seconds

Ship network security system research that apply Green IT (Green IT를 적용한 선박 네트워크 보안 시스템 연구)

  • Baek, Jong-Il;Park, Dea-Woo;An, Jae-Min;Chang, Young-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.379-382
    • /
    • 2009
  • As IT becomes leading part of futurity industry, issue about Green IT is being on the increase and resources recycling, toxicity water use resection, saveenergy etc. are emphasized. Fundamental purpose for Neteuwokeusiseutem's Green IT realization that is constructed on ship studied about network security system that can control access that use resources as efficient and safe and is enemy of evil which can give subordinate of system for this and resect unnecessary hardware waste by back more.

  • PDF

Control process design for linking energy storage device to ship power source (선박 전력원에 에너지 저장장치 연계를 위한 제어 프로세스 설계)

  • Oh, Ji-Hyun;Lee, Jong-Hak;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1603-1611
    • /
    • 2021
  • As IMO environmental regulations are tightened, the need to establish a system that can reduce emissions is increasing, and for this purpose, various power control management systems have been studied and implemented as a new energy management system for ships. In this study, we design a control process through modeling for Bi-Directional Converter (BDC) application with bi-directional power flow to link batteries, which are energy storage devices, to conventional generator power systems, and propose mechanisms for batteries optimized for varying loads. This work models MATLAB/Simulink as a BDC and simulates current control and state of charge (SOC) optimization at the time of charging and discharging batteries according to load scenarios. Through this, the battery, power, and load were interlocked so that the generator operated on board could be operated in the optimal operation range, and power control management was performed to enable the generator to operate in the high fuel efficiency range.

A Study on Flow Characteristics due to Dimension Variations of the Vertical Plate for Controlling the Ship Stern Flow (선미유동 제어용 수직판 제원 변화에 따른 유동특성 연구)

  • Kim, Do-Jung;Oh, Woo-Jun;Park, Je-Woong;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.576-582
    • /
    • 2016
  • To cope with international regulations, such as Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP) and so forth, and to enforce limitations on $CO_2$ emissions, green-ship technology to lower fuel consumption has been actively researched, and the development of an energy-saving device (ESD) is being pursued. In order to design an ESD for small and medium-sized domestic vessels, an analysis on flow characteristics has been performed in the present study. Through a model test and numerical analyses, the characteristics of flow around the stern bilge and bulb have been compared to improve wake quality and resistance performance. As a result of these comparisons and analyses, a vertical plate has been adopted,, as a new ESD. Design criteria for the proposed ESD are also suggested. By applying this new ESD, it is expected that the total resistance and average nominal wake can be reduced by 3.04 % and 18.8 %, respectively.

An Analysis of the International Transportation Route at the Sight of Wind Power Equipment Manufacturing Company (풍력발전부품 제조업체의 관점에서 본 국제 운송경로 분석)

  • Yun, Seok-Hwan;Park, Jin-Hee
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.361-370
    • /
    • 2015
  • Wind energy began to receive attention as a new alternative fuel since 20 years ago and is growing as a booming global business model. Global wind power generation in the world has been continuously increasing for the past 10 years, accounting for over 30% of cumulative rate compared to total power generation. Global demand for wind power generation is gradually expanding due to restriction on carbon emission and environmental problems caused by increased greenhouse effect. Accordingly in this study, current transportation routes are classified into three types including access-priority route, economics-priority route, and convenience- priority route depending on distribution characteristics of wind power equipment in order to suggest transportation methods other than ships. The three types of transportation route that this study declared can make the Wind power equipment manufacturing companies can judge not only the duration of transportation but also effectiveness and economic feasibility. It means that the manufacturers can analyze and compare the effectiveness and economic feasibility, which are proceed by the shipping company and freight forwarder until now days.

Performance Analysis of Methane Fueled Marine Solid Oxide Fuel Cell and Steam Turbine Hybrid Power System (선박동력용 SOFC/ST 하이브리드시스템의 성능 평가)

  • Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.590-599
    • /
    • 2011
  • The electrification of the waste heat of fuel cell is necessary to enhance the efficiency of fuel cell system. For this purpose, the SOFC/ST(Solid oxide fuel cell/Steam turbine) hybrid system is suitable. The purpose of this work is to predict the performance of methane fueled SOFC/ST hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, combustor outlet gas temperature, and boiler outlet gas temperature. According to the analysis, it is proved that making the best use of the waste heat of stack and minimizing the fuel consumption of combustor are essential for the high-efficiency of SOFC/ST hybrid system.

The Method of Data Integration based on Maritime Sensors using USN (USN을 활용한 해양 센서 데이터 집합 방안)

  • Hong, Sung-Hwa;Ko, Jae-Pil;Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.306-311
    • /
    • 2017
  • In the future ubiquitous network, information will collect data from various sensors in the field. Since the sensor nodes are equipped with small, often irreplaceable, batteries with limited power capacity, it is essential that the network be energy-efficient in order to maximize its lifetime. In this paper, we propose an effective network routing method that can operate with low power as well as the transmission of data and information obtained from sensor networks, and identified the number of sensors with the best connectivity to help with the proper placement of the sensor. These purposes of this research are the development of the sensor middle-ware to integrate the maritime information and the proposal of the routing algorithm for gathering the maritime information of various sensors. In addition, for more secure ship navigation, we proposed a method to construct a sensor network using various electronic equipments that are difficult to access in a ship, and then construct a communication system using NMEA(the national marine electronics association), a ship communication standard, in the future.

A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel (소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this study, a trim tab on the stern hull of a small high-speed vessel of approximately 10 m length sailing at a Froude number of 1.0 was designed for energy efficiency. The running attitude and resistance performance of the bare hull and trim tab hull at several angles to the base line were analyzed for model and full scale ships using computational fluid dynamics, and compared to investigate the scale effect. The analysis results for the bare hull were quite similar, but a difference in the attitude control under same conditions of the trim tab was observed, resulting in the total resistance error. However, there was no significant difference in tendency of the variation in the resistance with the attitude. Thus, the optimum running attitude could be determined from the tendency despite the scale effect, but a full scale analysis is required to analyze the control of the attitude by the trim tab and flow characteristics near the full scale ship.

Experimental verification of inverter's optimal controller for driving 150kW SPMSM of EGR blower of Green-ships (친환경 선박 EGR 블로워용 150kW SPMSM 구동 인버터 최적제어기의 실험적 검증)

  • Sehwan, Kim;Yeonwoo, Kim;Minjae, Kim;Uihyung, Yi;Sungwon, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.596-601
    • /
    • 2022
  • The application of the EGR system is increasing according to the recent trend of conversion to green-ships. EGR blower, one of the core parts of the EGR, consists of aerodynamic system and e-motor and inverter and etc. For the e-motor, a permanent magnet type synchronous motor with high energy density and excellent efficiency is applied recently. Small and medium-sized enterprises trying to develop the e-motors, however, for marine inverters mostly developed by global advanced companies due to the rigid classification certification and technical difficulties. One of disadvantage of universal inverters is that when optimal control fails, it is difficult to find the cause from user's point of view. Therefore, in this study, optimal controllers(Current vector contol and Tracking observer) for SPMSM for EGR blower was designed and verified to analyze the causes of failure of optimal control of universal inverter.

A Study on the Effectiveness of Each Response Plan According to the Strengthening of the Regulation of GHG Emission from the Ship (선박 온실가스 배출규제 강화에 따른 대응방안별 실효성 연구)

  • Yeong-Soo Ryu;Myung-Hee Chang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.201-202
    • /
    • 2021
  • Regulations on greenhouse gases emitted from ships in international shipping are being strengthened, and the greenhouse gas reduction target established by the International Maritime Organization is acting as a great challenge for shipping companies in terms of technical and operational aspects. The International Maritime Organization aims to reduce carbon intensity by 30% by 2030, 70% by 2050, and by 50% in terms of gross emissions compared to 2008. To realize this situation, the IMO adopted some short-term and mid-to-long-term measures and adopted technical measures such as the application of EEXI, an energy efficiency index, to existing ships from 2023, and the early application of EEDI phase 3 for some tpe of ships. In addition, reduction measures were introduced to reduce greenhouse gas in the operational aspect.

  • PDF

Thermal analysis of LNG storage tank for LNG bunkering system (LNG 벙커링용 고효율 LNG 저장탱크 열해석)

  • Yun, Sang-kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.876-880
    • /
    • 2015
  • In 2016, the IMO's new rules for an 80% reduction in NOx emissions in newly built ships will necessitate the use of LNG as a clean fuel. So far, the developed European countries have led the development of LNG bunkering ships and related facilities. An LNG bunkering system stores LNG in a horizontal or vertical IMO "C"-Type tank insulated with perlite powder, and a vacuum in the annular space between the double walls, like the cryogenic liquid nitrogen tank. Current storage tanks have high heat leakage, evaporating over 2.0% daily, and are difficult to build with the required vacuum. A more efficiently insulated storage tank could reduce the evaporation rate. This research carried out thermal analysis on a new effective insulation method that separates high vacuum in the annular space between two tanks with a solid insulation material, such as urethane foam, lining the outer vessel. This highly efficient insulation system obtained an evaporation rate of 0.03% per day under a $10^{-3}torr$ vacuum, and an evaporation rate of 0.11% at $10^{-45}torr$. Even if the space loses its vacuum, the new insulation system showed a lower evaporation rate of 4.12% than the present perlite system of 4.9%. This newly developed tank can increase the efficiency of LNG storage tank and may help keep LNG bunkering systems safe.