• Title/Summary/Keyword: 상태 궤환 제어

Search Result 171, Processing Time 0.028 seconds

Application of decoupling control method to the multivariable generating system (다변수 발전설비 모델에 대한 비간섭 제어기법 적용 연구)

  • 홍석교;김동화
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-50
    • /
    • 1992
  • In this paper, application of decoupling control method of multivariable system by state feedback to turbo-generating system with 2-input and 2-output is studied. The results of simulation shows tat turbo-generating system is canonically decoupled, and can be controlled against the change of load or frequency by feedback gain.

  • PDF

Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors (전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계)

  • Oh, Tae-Seok;Shin, Yun-Su;Kim, Il-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

Fuzzy Pulse-Width-Modulated Feedback Control: Global Intelligent Digital Redesign Approach (퍼지 펄스폭 변조 궤환 제어: 전역적 지능형 디지털 재설계 접근법)

  • Lee Ho Jae;Joo Young Hoon;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This paper discusses an intelligent digital redesign technique for designing a fuzzy pulse-width-modulated (PWM) control. First when we are given a well-designed fuzzy analog control, the equivalent digital control is intelligently redesigned. Using the similar technique we intelligently redesign the fuzzy PWM control from the intelligently redesigned fuzzy digital control. A stabilizability of the intelligently redesigned PWM control is rigorously analyzed.

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Instantaneous Voltage Control Scheme of Auxiliary Power Supply System for Electric Railway Vehicles (철도차량 보조전원장치의 순시전압제어)

  • 김재식;최재호;임성수;이은규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.349-356
    • /
    • 1999
  • This paper presents an instantaneous voltage control scheme of au킹liary power supply system for the electric railway v vehicles, The resonance problem of the LC filter and the existing steady state error are more serious as the use of l instantaneous voltage control techniques for the fast transient response at the nonlinear load, A filter capacitor current f feedback loop is considered to increase the damping ratio of the voltage transfer function for the suppression of the resonance problem of the LC inverter output filter. To eliminate the steady state en‘or existing in case of the AC l instantaneous voltage control. the high gain transfer function is added to the conventional PI controller. The theoretical a analysis is well described with the simulation results. The validity of the proposed schemes is well verified through the s simulation and expelimental results for the 5 kVA prototype.

  • PDF

Decentralized Stabilization for Uncertain Discrete-Time Large-Scale Systems with Delays in Interconnections and Controller Gain Perturbations (제어기의 이득 섭동을 갖는 이산 시간지연 대규모 시스템을 위한 강인 비약성 제어기)

  • Park, Ju-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.8-17
    • /
    • 2002
  • This paper considers the problems of robust decentralized control for uncertain discrete-time large-scale systems with delays in interconnections and state feedback gain perturbations. Based on the Lyapunov method, the state feedback control design for robust stability is given in terms of solutions to a linear matrix inequality (LMI), and the measure of non-fragility in controller is presented. The solutions of the LMI can be easily obtained using efficient convex optimization techniques. A numerical example is included to illustrate the design procedures.

Attitude and Hovering Control of Quadrotor Systems using Pole Placement Method (극 배치 기법을 활용한 쿼드로터 시스템의 자세 및 호버링 제어)

  • Park, Ji-Sun;Oh, Sang-Young;Choi, Ho-Lim
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.106-119
    • /
    • 2020
  • In this paper, we propose a control scheme for quadrotor system using a pole placement method. When using a state feedback controller, a lot of trial and error in selection of control gains are often required to improve system performance. In order to relax this complicated process, we analyze the closed-loop system associated with control gains. Then, we present a control gain selection algorithm for control gains using a pole placement method to improve the system performance. The proposed control method is applied to the actual quadrotor system to illustrate the validity of the proposed method.

A State Feedback Controller Design for a Networked Control System with a Markov Delay (마코프 지연을 갖는 네트워크 제어 시스템을 위한 상태 궤환 제어기 설계)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.549-556
    • /
    • 2020
  • This paper proposes several suboptimal methods of designing a controller for a networked control system with state feedback where delay due to transmission error and transmission delay is modeled as a Markov process. A stability condition for a control system with Markov delay is found through an equivalent relationship that corresponding delay-dependent Lyapunov-Krasovskii functional has the same form of the Lyapunov function of an augmented control system. Several suboptimal methods of designing a controller from the stability condition are proposed to reduce complexity. A simple numerical experiment shows that a restricted subspace method which limits the search space of a matrix variable to a block diagonal form provides the best tradeoff between the complexity and performance.

Development of Constant Output Power Supply System for Ozonizer (오존발생장치용 정출력 전원장치의 개발)

  • Woo, Jung-In;Woo, Sung-Hoon;Roh, In-Bae;Park, Jee-Ho;Kim, Dong-Wan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.113-121
    • /
    • 2005
  • In this paper, a constant output power supply system for ozonizer is proposed to remove the noise of ozonizer and control the output of ozonizer using feedback control. The proposed system is based on the rouble control loop such as the outer voltage control loop and inner current control loop. In the proposed system overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an internal model controller. The internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the experimental results.

Observer-Based Digital fuzzy Controller Design Using Digital Redesign (디지털 재설계를 이용한 관측기 기반 디지털 퍼지 제어기 설계)

  • Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.520-525
    • /
    • 2003
  • This paper concerns a design methodology of observer-based output-feedback digital controller for Takagi-Sugeno(TS) fuzzy systems using intelligent digital redesign (IDR). The term of IDR involves converting an analog fuzzy-mode-based controller into an equivalent digital one in the sense of state-matching. The considered IDR problem is viewed as convex minimization problems of the norm distances between linear operators to be matched. The stability condition is easily embedded and the separations principle is explicitly shown.