• Title/Summary/Keyword: 삼차원표면 형상측정

Search Result 10, Processing Time 0.032 seconds

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

Precision Profile Measurement of Mirror Surfaces by Phase Shifting Interferometry (광위상간섭에 의한 경면의 정밀 형상측정)

  • 김승우;공인복;민선규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1530-1535
    • /
    • 1992
  • An optical method of phase shifting interferometry is presented for the 3-dimensional profile measurement of mirror surfaces with nanometer resolution. A series of optical interferometric fringes are generated by comparing the surface to be measured with a reference flat. The fringes are captured by a CCD camera and then analyzed to obtain actual surface profile. Detailed principles are described along with necessary image processing algorithms. finally, several measurement examples are discussed which were performed on lapped surfaces, hard discs, and semiconductor wafers.

Quantitative Analysis for Surface Recession of Ablative Materials Using High-speed Camera and 3D Profilometer (초고속 카메라와 삼차원 표면 측정기를 이용한 삭마 재료의 정량적 표면 침식 분석)

  • Choi, Hwa Yeong;Roh, Kyung Uk;Cheon, Jae Hee;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.735-741
    • /
    • 2018
  • In this paper, the surface recession of ablative materials was quantitatively analyzed using a high-speed camera and a three-dimensional profilometer. The ablation tests of the graphite and carbon/phenolic composite samples were performed using a 0.4 MW arc-heated wind tunnel for simulating the atmospheric re-entry environment. The real-time images during the ablation test were captured by the high-speed camera, and analyzed to calculate the surface recession and recession rate. Also, the surface data of samples were obtained using a three-dimensional profilometer, and the surface recession was precisely calculated from the difference of height between the surface data before and after the test. It is effective to complement the two measurement results in the comprehensive analysis of surface recession phenomena.

Dispersive white-light interferometry using polarization of light for thin-film thickness profile measurement (편광분리 분산 분산형 백색광 간섭계를 이용한 박막두께형상측정법)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.565-568
    • /
    • 2005
  • We describe a new scheme of dispersive white-light interferometer that is capable of measuring the thickness profile of thin-film layers, for which not only the top surface height profile but also the film thickness of the target surface should be measured at the same time. The interferometer is found useful particularly for in-situ inspection of micro-engineered surfaces such as liquid crystal displays, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Surface profile measurement with optically trapped micro-particles (광포획된 마이크로 입자를 이용한 표면형상 측정)

  • 주지영;김준식;김승우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.116-117
    • /
    • 2001
  • 정밀 삼차원 미세 형상 측정기에서 성능의 관건은 고속, 고분해능으로 측정하는 것이다. 그러기 위해서는 공진주파수가 높아야 하고 스프링 상수가 작아야 한다. 광포획 현미경(optical trap microscope, OTM)은 광포획 된 마이크로 입자를 프로브로 사용하는 것으로 입자에 작용하는 복원력이 광에 의한 힘뿐이므로 스프링 상수가 낮다. 또한 공진주파수는 f=√k/m 으로 입자의 질량이 매우 작으므로 공진주파수도 비교적 높다. (중략)

  • PDF

Profile Measurements of Micro-Machined Surfaces by Scanning Tunneling Microscopy (터널링효과를 이용한 초미세 가공표면의 형상측정)

  • Jung, Seung-Bae;Lee, Young-Ho;Kim, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1731-1739
    • /
    • 1993
  • An application of Scanning Tunneling Microscopy(STM) is investigated for the measurement of 3-dimensional profiles of the macro-machined patterns of which critical dimensions lie in the range of submicrometers. Special emphasis of this investigation is given to extending the measuring ranges of STM upto the order of several micrometers while maintaining superb nanometer measuring resolution. This is accomplished by correcting hysteresis effects of piezoelectric actuators by using non-linear compensation models. Detailed aspects of design and control of a prototype measurement system are described with some actual measuring examples in which fine It patterns can successfully be traced with a resolution of 1 nanometer over a surface range of $4{\times}2$ micrometers.

3D Scan Model Fitting by Using Statistics (통계를 이용한 3차원 스캔모델 맞춤 방법)

  • Soohyun Jeon;Hyewon Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.219-222
    • /
    • 2008
  • 3차원 인체 스캐너로부터 얻어진 인체형상데이터는 여러 인체에 대한 3차원 평균 모델을 만들어 내는 등의 통계적 분석이나 자세 변경을 위해 필요한 내부 골격 구조와 골격과 피부조직 사이의 관계 등을 계산해 내기 어렵다. 또, 이러한 통계적 분석을 위해서는 각 모델 간의 상응 관계가 확립되어야 하지만 스캐너로부터 얻어진 인체 형상 데이터들은 측정 환경이나 대상에 따라 각각이 서로 상이한 기하학적 구조로 이루어져 있다. 본 논문에서는 템플릿 모델을 3차원 인체데이터에 맞도록 변형함으로써 다수의 인체 형상에 대하여 토폴로지를 일치시키도록 한다. 3차원 인체 데이터에 대해 템플릿 모델이 가장 근사한 형상이 되도록 하는 변형을 자동으로 찾아내기 위해서 표면 위에 정의된 특징점들을 사용한다. 또한, 기존에 찾아둔 특징점군 및 변형정보 데이터가 충분히 많다면 새로운 변형을 계산하는 데 유용하게 사용될 수 있음을 보인다. 이렇게 상응 관계가 확립된 모델들은 삼차원 벡터 공간의 점들의 집합으로 표현 및 통계적 분석이 가능하게 된다.

A New Method of Noncontact Measurement for 3D Microtopography in Semiconductor Wafer Implementing a New Optical Probe based on the Precision Defocus Measurement (비초점 정밀 계측 방식에 의한 새로운 광학 프로브를 이용한 반도체 웨이퍼의 삼차원 미소형상 측정 기술)

  • 박희재;안우정
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.129-137
    • /
    • 2000
  • In this paper, a new method of noncontact measurement has been developed for a 3 dimensional topography in semiconductor wafer, implementing a new optical probe based on the precision defocus measurement. The developed technique consists of the new optical probe, precision stages, and the measurement/control system. The basic principle of the technique is to use the reflected slit beam from the specimen surface, and to measure the deviation of the specimen surface. The defocusing distance can be measured by the reflected slit beam, where the defocused image is measured by the proposed optical probe, giving very high resolution. The distance measuring formula has been proposed for the developed probe, using the laws of geometric optics. The precision calibration technique has been applied, giving about 10 nanometer resolution and 72 nanometer of four sigma uncertainty. In order to quantitize the micro pattern in the specimen surface, some efficient analysis algorithms have been developed to analyse the 3D topography pattern and some parameters of the surface. The developed system has been successfully applied to measure the wafer surface, demonstrating the line scanning feature and excellent 3 dimensional measurement capability.

  • PDF

Surface Topography Measurement and Analysis for Bullet and Casing Signature Identification (총기 인식을 위한 측정 시스템 구현 및 해석 알고리즘 개발)

  • Rhee, Hyug-Gyo;Lee, Yun-Woo;Vorburger Theodore Vincent;Reneger Tomas Brian
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • The Integrated Ballistics Identification Systems (IBIS) is widely used for bullet and casing signature identification. The IBIS obtains a pair of ballistic signatures from two bullets (or casings) using optical microscopy, and estimates a correlation score which can represent the degree of signature match. However, this method largely depends on lighting and surface conditions because optical image contrast is primarily a function of test surface's slope, shadowing, multiple reflections, optical properties, and illumination direction. Moreover, it can be affected with surface height variation. To overcome these problems and improve the identification system, we used well known surface topographic techniques, such as confocal microscopy and white-light scanning interferometry. The measuring instruments were calibrated by a NIST step height standard and verified by a NIST sinusoidal profile roughness standard and a commercial roughness standard. We also suggest a new analysis method for the ballistic identification. In this method, the maximum cross-correlation function CCFmax is used to quantify the degree of signature match. If the compared signatures were exactly the same, CCFmax would be $100\%$.

ANALYSIS OF ER:YAG LASER IRRADIATION ON CUTTING EFFICACY OF ENAMEL AND DENTIN (Er:YAG 레이저의 법랑질 및 상아질의 삭제효과 비교)

  • Hong, Seong-Su;Lee, Sang-Ho;Lee, Chang-Seop;Kim, Su-Gwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.728-734
    • /
    • 2001
  • The purpose of this study was to investigate the effects of Er:YAG laser on cutting of efficacy of enamel and dentin in primary and permanent teeth. We used the enamel and dentin specimens of human teeth which contain the physiologic saline and maintain the pulpal pressure in dentinal tubules. Each specimen was exposed to Er:YAG laser with non-contact mode under different treatment condition of irradiation energy, pulse repetition rate. We investigated the cutting efficacy of Er:YAG laser by Scanning Intensity Microscopy, and obtained following results. 1. Cutting volume of enamel and dentin in primary and permanent teeth were increased by increasing the irradiation energy, pulse repetition rate. 2. Cutting volume of primary teeth was larger than that of permanent teeth. 3. Cutting volume of dentin was larger than that of enamel in primary and permanent teeth. From these results, Er:YAG laser would be more effective in cutting dentin than enamel, and in cutting primary teeth than permanent teeth for clinical application.

  • PDF