• Title/Summary/Keyword: 비틀림 각

Search Result 189, Processing Time 0.023 seconds

Torsional Analysis of Thin-Walled Open Beams Using Effective Torsional Constants (유효비틀림계수를 사용한 박벽개보의 비틀림해석)

  • Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.203-211
    • /
    • 2006
  • This paper presents a new, effective torsional constant for thin-waled open beams under concentrated and uniformly distributed torques. The proposed constant can be used directly, instead of the St. Venant torsional constant, for any generic comemrcial finite-element program, without modifying the algorithm. The derived torsional constant accounts for both the pure torsion and the warping torsion, and is equal to the St. Venant torsion constant times a correction factor. It is also shown, in the case of the St. Venant torsion, that the derived constant is identical to the torsional constant. The derived effective torsional constant is different from the one given by Elhelbawey et al. The pure torsional shear stress, the warping shear stress, and the warping normal stress were also determine d, using the maximum twisting angle. The accuracy of the proposed torsional constant was validated by comparing the numerical results with the closed-form solutions or other numerical results available in the literature.

Aerodynamic Analysis of a Rectangular Wing in Flapping and Twisting Motion using Unsteady VLM (직사각형 평판 날개의 날개짓과 비틀림 운동에 대한 비정상 VLM 공력 해석)

  • Kim, U-Jin;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.14-21
    • /
    • 2006
  • The unsteady vortex lattice method is used to model twisting and flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various twisting angles and reduced frequency with an amplitude of flapping angle($20^{\circ}$). And the effects of the twisting on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

Study on Torsion due to Automotive Body Type at Track Driving (궤적주행 시 차체 종류에 따른 비틀림에 관한 연구)

  • Choi, Youn-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because there is no suspension and differential devices at cart body, the deformation of the frame happened during kart driving affects the driving performance caused by the elastic deformation and the fatigue life of kart frame resulted from the permanent deformation. The dynamic behavior of kart caused by the torsional deformation during circular driving is the important factor of these two kinds of deformations. In order to analyze the dynamic behavior of kart at this curved section, GPS is used to trace the track of kart and the torsional stress at kart-frame has been measured with real time. The mechanical properties of kart-frames for leisure and racing are investigated through material property analysis and tensile test. Torsional stress concentration and frame distortion are investigated through stress analysis on frame on the basis of study result. The real karts for leisure and racing kart are also tested in each driving condition by using the driving analysis equipment. The driving behavior of kart at the curved section are investigated through this test. As the phenomenon of load movement due to centrifugal force at car is happened during circular driving, the torsional stress occurs at cart steel frame.

Design of a Torque Application Device in Test Rig for a Wind Turbine Gearbox (풍력발전기용 증속기 시험 장비의 토크 인가 장치 설계)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Nam, Yong-Yun;Oh, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.507-515
    • /
    • 2015
  • This study was conducted to develop and verify a torque application device for use in a mechanical power-circulation test rig for 5.5 MW wind turbine gearboxes. The design and analysis of the torque application device was conducted. In addition, the torsional stiffness of the test rig was calculated using the rotational angle measurements for each of the components. The calculated stiffness of the test rig was $231.13kN{\cdot}m/rad$ for a clockwise torque application. The rated torque can be applied when the stiffness of the gearbox is greater than $1,064,400kN{\cdot}m/rad$ for a clockwise torque application. Because of the limited rotational angle of the test rig, the potential application of the rated torque is determined according to the torsional stiffness of the test gearbox.

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

Evaluation of Convective Heat Transfer Performance of Twist-Vane Spacer Grid in Rod Bundle Flow (봉다발 유동 내 비틀림 혼합날개 지지격자의 대류열전달 성능 평가)

  • Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • The performance of convective heat transfer in rod bundle flow was experimentally evaluated using a twist-vane spacer grid. A $4{\times}4$ square-arrayed rod bundle was prepared as the test section, with a pitch-to-diameter ratio(P/D) of ~1.35. To check the convective heat transfer performance, the circumferential and longitudinal variations in rod-wall temperatures were measured downstream of the twist-vane spacer grid. In the circumferential measurements, the rod-wall temperature toward the twist-vane tip showed the lowest value, which might be due to the deflected water flow caused by the twist-vane. On the other hand, the wall temperature of the longitudinal measurements near the twist-vane spacer grid decreased dramatically, which implies that the convective heat transfer performance was enhanced. A heat transfer enhancement of ~35 % was achieved near downstream of the twist-vane spacer grid, as compared with the upstream value. Based on the present experimental data, a correlation for predicting the heat transfer performance of a twist-vane spacer grid was proposed.

Investigation of osseointegration according to the healing time after having iatrogenic mobility of implant fixtures (임플란트 고정체의 인위적 비틀림 후 시간 경과에 따른 골재유착 반응에 관한 연구)

  • Hwang, Yun-Jin;Cho, Jin-Hyun;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.308-314
    • /
    • 2010
  • Purpose: The purpose of this study is to analyze the change in re-osseointegration over time and bone reaction at the interface between implant fixture and the surface of the bone, after destroying re-osseointegration by distorting the bone-implant interface artificially. Materials and methods: Experimental implant fixtures (cp titanium, ${\phi}3.75\;mm{\times}4\;mm$) which didn't have surface treatment were produced. Two or three fixtures were implanted on both tibias of twelve female rabbits (New Zealand white, more than 3.5 kg). Then after six weeks, removal torque (RT) was measured and the results were recorded as the first measurement values. The fixtures were submerged again to get reosseointegration between the bone and fixture. To identify the change in re-osseointegration of submerged fixtures over time, six groups had the healing time for four days (group I), one week (group II), two weeks (group III), three weeks (group IV), four weeks (group V) and five weeks (group VI), and then the secondary removal torque was measured for each group. To identify the bone formation under fluorescent light, tetracycline (15 mg/kg, IM) were treated on the rabbits of each group. After the second measurement, the rabbits were sacrificed, and 16 slides were made, two or three for each group. The slides were observed under the fluorescent light with light microscope. To find out the change in the secondary removal torque over the primary removal torque in progress of time, the averages of the increase rate of the primary and secondary torque removal force were calculated. Then, to find out if there were any critical differences between the primary removal torque and the secondary removal torque in each group and among the groups, the results were analyzed statistically by paired t- test, one-way ANOVA, and Duncan's Multiple Range Test. Results: In group I and II, secondary removal torque decreased, especially in group I. In group III, IV, V, and VI, secondary removal torque increased critically. Comparing the differences among the groups, the critical difference was shown between group I, II and group III, IV, V, VI. Mineralization at the interface between the bone and implant fixture was identified from the first week, and bone formation was shown more clearly from the second week. Conclusion: If the implant fixture remains unforced for a certain period of time after the fixture has had iatrogenic mobility, re-osseointegration occurs at the surface of the fixture, and for tibias of rabbits, higher re-osseointegration was obtained within two weeks.

Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures (비대칭 벽식 구조지 변위기초 내진성능평가 및 보강)

  • Hong, Sung-Gul;Ha, Tae-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.23-32
    • /
    • 2005
  • Torsional behavior of eccentric structure under seismic leading may cause the stress and/or deformation concentration, which arouse the failure of the structure in an unexpected manner. This study suggests D-R relationship which shows the overall displacement and rotation of the system based on the ultimate displacement capacity of the each lateral load resistant member. Using the suggested D-R relationship and displacement spectrum, the seismic assessment is conducted and verified in comparison with the time history analysis result. Multi-level seismic assessment Is considered which takes multiple seismic hazard levels and respective performance levels into account. Finally, based on the seismic assessment result, seismic rehabilitation process is presented. In this research, two rehabilitation methods are considered. One is done by means of stiffening/strengthening the seismic resistant members, and the other is based on the member ductility. Especially, in the first method, to optimize the rehabilitation result, the rehabilitation problem is modeled as an optimization problem, and solved using BFGS quasi-Newton optimization method.

Torsional Behavior of Core Structures according to the Location of Reinforcement (보강재의 위치변화에 따른 코아구조물의 비틀림거동)

  • 정동조
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.545-555
    • /
    • 2002
  • This paper presents a matrix analysis to get the torsional behavior of core structures with torsional reinforcements. Based on simplified assumptions, formulae for the forces and displacements of cote structures subjected to three typical load cases, i.e. uniformly distributed torque, triangularly distributed torque and a concentrated torque at the top of the structure, are derived analytically. The behavior of the cote according to the variation of reinforcement locations is investigated to estimate the optimum locations of reinforcements to minimize the core rotations and bimoments. The results by the program MIDAS-GEN have shown that this analysis can give quite satisfactory results for structural models with torsional reinforcements. Although three dimensional analysis by computer has come within reach as a normal structural design procedure, its use as an optimization tool may not be desirable in view of the expense and time required. Formulae that we presented here can be used to estimate the torsional rotations and forces of practical cote structures at the preliminary design stages.

A Development of Torsional Analysis Model and Parametric Study for PSC Box Girder Bridge with Corrugated Steel Web (복부 파형강판을 사용한 PSC 복합 교량의 비틀림 해석모델의 제안 및 변수해석)

  • Lee, Han-Koo;Kim, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.281-288
    • /
    • 2008
  • The Prestressed Concrete (hereinafter PSC) box girder bridges with corrugated steel webs have been drawing an attention as a new structure type of PSC bridge fully utilizing the feature of concrete and steel. However, the previous study focused on the shear buckling of the corrugated steel web and development of connection between concrete flange and steel web. Therefore, it needs to perform a study on the torsional behavior and develop the rational torsional analysis model for PSC box girder with corrugated steel web. In this study, torsional analysis model is developed using Rausch's equation based on space truss model, equilibrium equation considering softening effect of reinforced concrete element and compatibility equation. Validation studies are performed on developed model through the comparison with the experimental results of loading test for PSC box girder with corrugated steel webs. Parametric studies are also performed to investigate the effect of prestressing force and concrete strength in torsional behavior of PSC box girder with corrugated steel web. The modified correction factor is also derived for the torsional coefficient of PSC box girder with corrugated steel web through the parametric study using the proposed anlaytical model.