DOI QR코드

DOI QR Code

Evaluation of Convective Heat Transfer Performance of Twist-Vane Spacer Grid in Rod Bundle Flow

봉다발 유동 내 비틀림 혼합날개 지지격자의 대류열전달 성능 평가

  • Lee, Chi Young (Dept. of Fire Protection Engineering, Pukyong Nat'l Univ.)
  • Received : 2015.10.14
  • Accepted : 2016.01.18
  • Published : 2016.03.01

Abstract

The performance of convective heat transfer in rod bundle flow was experimentally evaluated using a twist-vane spacer grid. A $4{\times}4$ square-arrayed rod bundle was prepared as the test section, with a pitch-to-diameter ratio(P/D) of ~1.35. To check the convective heat transfer performance, the circumferential and longitudinal variations in rod-wall temperatures were measured downstream of the twist-vane spacer grid. In the circumferential measurements, the rod-wall temperature toward the twist-vane tip showed the lowest value, which might be due to the deflected water flow caused by the twist-vane. On the other hand, the wall temperature of the longitudinal measurements near the twist-vane spacer grid decreased dramatically, which implies that the convective heat transfer performance was enhanced. A heat transfer enhancement of ~35 % was achieved near downstream of the twist-vane spacer grid, as compared with the upstream value. Based on the present experimental data, a correlation for predicting the heat transfer performance of a twist-vane spacer grid was proposed.

봉다발 유동에서 비틀림 혼합날개 지지격자의 대류열전달 성능을 실험적으로 평가하였다. 시험부는 $4{\times}4$ 정사각 배열의 봉다발로 제작하였고, 모의 봉다발에서 봉 중심 간 거리와 봉 외경의 비는 ~1.35이다. 대류열전달 성능 평가를 위해 혼합날개 지지격자 하류에서 봉 벽면 온도의 원주방향 및 축방향 분포를 측정하였다. 원주방향의 경우, 지지격자 하류에서 비틀림 혼합날개 끝이 향하는 벽면의 온도가 가장 낮게 나타났는데 이는 비틀림 혼합날개에 의해 왜곡된 유동 때문으로 판단된다. 반면, 축방향의 경우, 혼합날개 지지격자 근처에서 벽면의 온도가 크게 낮아졌는데, 이는 비틀림 혼합날개에 의해 대류열전달이 향상됨을 의미한다. 비틀림 혼합날개 지지격자에 의해 대류열전달 성능은 지지격자 상류에 비해 지지격자 근처 하류에서 ~35 % 향상되었고, 실험데이터를 기반으로 비틀림 혼합날개 지지격자에 대한 열전달 성능 예측 상관식을 제안하였다.

Keywords

References

  1. Oh, D. S., 2002, "Measurement of Flow Structure in Rod Bundle downstream of Split Vaned Spacer Grid," Proceedings of 2002 SAREK Summer Annual Conference, pp. 138-144.
  2. In, W. K., Oh, D. S. and Chun, T. H, 2001, "CFD Application to Development of Flow Mixing Vane in a Nuclear Fuel Assembly," Proceedings of 2001 KSME Spring Annual Conference, pp. 482-487.
  3. In, W. K., Oh, D. S. and Chun, T. H, 2001, "Optimum Design of Hybrid Mixing Vane in a Nuclear Fuel Bundle by the CFD Method," Proceedings of 2001 KSME Autumn Annual Conference, pp. 224-229.
  4. Shen, Y. F., Cao, Z. D. and Liu, Q. G., 1991, "An Investigation of Crossflow Mixing Effect Caused by Grid Spacer with Mixing Blades in a Rod Bundle," Nuclear Engineering and Design, Vol. 125, pp. 111-119. https://doi.org/10.1016/0029-5493(91)90071-O
  5. Yang, S. K. and Chung, M. K., 1996, "Spacer Grid Effects on Turbulent Flow in Rod Bundles," Journal of the Korean Nuclear Society, Vol. 28, pp. 56-71
  6. McClusky, H. L., Holloway, M. V., Beasley, D. E. and Conner, M. E., 2002, "Development of Swirling Flow in a Rod Bundle Subchannel," Journal of Fluids Engineering, Vol. 124, pp. 747-755. https://doi.org/10.1115/1.1478066
  7. McClusky, H. L., Holloway, M. V., Conover, T. A., Beasley, D. E., Conner M. E. and Smith, L. D., 2003, "Mapping of the Lateral Flow Field in Typical Subchannels of a Support Grid with Vanes," Journal of Fluids Engineering, Vol. 125, pp. 987-996. https://doi.org/10.1115/1.1625688
  8. Holloway, M. V., McClusky, H. L., Beasley, D. E. and Conner, M. E., 2004, "The Effect of Support Grid Features on Local, Single-phase Heat Transfer Measurements in Rod Bundles," Journal of Heat Transfer, Vol. 126, pp. 43-53. https://doi.org/10.1115/1.1643091
  9. Holloway, M. V., Conover, T. A., McClusky, H. L., Beasley, D. E. and Conner, M. E., 2005, "The Effect of Support Grid Design on Azimuthal Variation in Heat Transfer Coefficient for Rod Bundles," Journal of Heat Transfer, Vol. 127, pp. 598-605. https://doi.org/10.1115/1.1863274
  10. Conner, M. E., Smith III, L. D., Holloway, M. V. and Beasley, D. E., 2005, "Heat Transfer Coefficient Testing in Nuclear Fuel Bundles with Mixing Vane Grids," 2005 Water Fuel Performance Mtg., Kyoto, Japan.
  11. Yao, S. C., Hochreiter, L. E. and Leech, W. J., 1982, "Heat-transfer Augmentation in Rod Bundles Near Grid Spacers," Journal of Heat Transfer, Vol. 104, pp. 76-81. https://doi.org/10.1115/1.3245071
  12. Miller, D. J., Cheung, F. B. and Bajorek, S. M., 2013, "On the Development of a Grid-enhanced Single-phase Convective Heat Transfer Correlation," Nuclear Engineering and Design, Vol. 264, pp. 56-60. https://doi.org/10.1016/j.nucengdes.2012.11.023
  13. In, W. K., Kang, H. S., Yoon, K. H., Jung, Y. H., Kim, H. H., Oh, D. S., Chun, T. H. and Song, K. N. (KAERI), 2008, "Twisted Deflector for Enhancing Coolant Mixing in a Nuclear Fuel Assembly," EP 1139348.
  14. In, W. K., Shin, C. H. and Lee, C. Y., 2014, "Experimental Observation of Forced Flow Mixing in Tight-lattice Rod Bundle," Trans. ANS, Reno, Nevada, USA, pp. 662-664.
  15. In, W. K., Shin, C. H. and Lee, C. Y., 2015, "Convective Heat Transfer Experiment of Rod Bundle Flow with Twist-vane Spacer Grid," Nuclear Engineering and Design, Vol. 295, pp. 173-181. https://doi.org/10.1016/j.nucengdes.2015.10.004
  16. Kline, S. J., 1985, "The Purposes of Uncertainty Analysis," Journal of Fluids Engineering, Vol. 107, pp. 153-160. https://doi.org/10.1115/1.3242449