• Title/Summary/Keyword: 비원형 단면

Search Result 141, Processing Time 0.024 seconds

Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet (CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Koh, Kwang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2017
  • This study deals with the strengthening effect and behavioral characteristics of square concrete column wrapped with carbon FRP sheet. The increase in axial compression capacity comes from the confinement effect of wrapped CFRP sheet. Because of the shape of square concrete column, the confinement effect is smaller than that in circular column. For the experimental program, four parameters including the number of sheet, the size of column specimen, the aspect ratio, the corner rounding, and the transformation in shape from square to circular were selected to examine the strengthening effect and behavioral characteristics for each parameter. Experimental program comprised fifty five square concrete column specimens for different eleven types. The compression test results confirmed that the strengthening effect can be increased by the confinement of wrapped and bonded CFRP sheet. However, the confining effect was decreased with the increase of square column size. The other hand, the ductility in square concrete column greatly increased due to caging effect of CFRP sheet. The transformation in shape from square to circular considerably increased both the compressive strength and the ductility of the concrete column wrapped with CFRP sheet. In addition, using test results and existing studies, accuracy and reliability of the existing strength models for CFRP-confined square concrete are verified.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

An Analytical Study on the Optimum Application of Diaphragm in Circular Steel Piers (원형강교각의 다이아프램 최적 적용에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.91-96
    • /
    • 2007
  • To improve the land use of urban, Construction of the circular steel column is required recently. The circular steel columns have a advantage for improving a load carrying capacity as wall as reducing a effective section area. However, the circular steel columns under service load, such as earthquake, shows a tendency to cause local buckling and large deformation. To prevent these phenomena, use of diaphragm is considered. It is reported that longitudinal stiffeners has a effect on improving a buckling and fatigue performance of steel structures. The research of effect on diaphragm is not sufficient. Under monotonic and cyclic loadings diaphragm make a important role to prevent local buckling and deformation of used steel structures. Therefore, influence of diaphragm on performance of used steel structures is investigated. In this study, the influence of diaphragm on seismic and deformation performance of circular steel piers was investigated by using elastic-plastic finite element analysis considered geometrical and material non-linearity. The seismic performance of circular steel columns was evaluated for analytical parameter of manufactured part. The seismic performance of circular steel columns was clarified by comparing an energy dissipation of circular steel piers.

  • PDF

Analysis on the characteristics of Combine Cutters heated by a High Frequency Induction Heater (고주파 열처리한 콤바인 예취날의 특성분석)

  • 전종길;김경원;윤진하;조희근;이인복
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.523-528
    • /
    • 2002
  • 콤바인 예취날의 내구성을 향상시키고자 예취날 성분분석을 한 다음 적정한 고주파열처리 방법을 구명하고자 예취날 단면 형상별, 가열 시간별, 냉각수 처리속도별로 시험한 후 경도 및 조직특성을 분석한 결과는 다음과 같다. 가. 국산 2종, 수입날 2종에 대한 성분분석 결과 국산 2종의 구성성분은 원소재인 SK5의 KS규격 범위내에 있고, 다만 수입날 1종의 Mn만이 0.7로 기준치인 0.5를 초과하고 있었다. 나. 고주파 코일 단면 형상에 따른 열처리시험에서 사각형 코일이 원형보다 경도가 약간 높게 나타나 사각형 코일 열전달 효율이 좋은 것으로 나타났으며, 시편에 가열하는 시간은 14sec, 냉각수의 처리속도는 Isec에서 가장 좋은 경도값을 나타내었다. 다. 고주파 열처리한 예취날 예취부의 평균 로크웰경도(H$_{R}$C)는 기존날 52.9, 개량날 62.0, 일산날 57.1로 나타나 개량날이 기존날에 비해 17% 경도가 높게 나타났다. 라. 예취날 볼트 고정부의 평균 경도는 기존 국산날이 39.3, 고주파열처리한 개량날 6.1, 일산날 9.3으로 고정부의 경도가 높으면 예취날이 깨어지는 경향이 있어 낮아야 하는데 국산날의 경우 상대적으로 높게 나타났다. 마. 예취날의 조직은 기존 국산 예취날의 경우 취성이 많고 강도가 약한 퍼얼라이트(Pearlite) 또는 미세퍼얼라이트(Fine Pearlite) 조직이었으나 일산날과 고주파열처리에 의한 개량날은 강도가 높고 내마모성이 강한 마르텐사이트(Martensite) 조직을 형성하고 있었다.

  • PDF

Behavior of Non-buoyant Round Jet under Waves (파랑수역에서 비부력 원형 제트의 거동)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.596-605
    • /
    • 2007
  • The behavior of a non-buoyant turbulent round jet discharging horizontally was investigated experimentally. The instantaneous velocity field of the jet was obtained using the particle image velocimetry (PIV) method and used to calculate the mean velocity field by phase-averaging. This study tested regular waves with a relatively small wave height for a wavy environmental flow. The centerline and cross-sectional velocity profiles were reported to demonstrate the effect of the waves on the jet diffusion in respect of wave height and wave phase. The wave phase effect was studied for three phases: zero-upcrossing point, zero-downcrossing point, trough. From the results, it is found that the centerline velocity decreases and width of the cross-sectional profile increases as the wave height increases. In addition, the self-similarity of the cross-sectional profile appears to break down although the width of each case along the axial distance does not vary significantly. The phase effect is found to be relatively small compared to the wave height effect.

Influence of the Geometry of Guide Groove on Stress Corrosion Index of Rock in Double Torsion Test (이중 비틀림 시험에서 유도 홈의 형상이 암석의 응력부식지수에 미치는 영향)

  • 정해식;미원우삼;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.363-372
    • /
    • 2004
  • Double torsion (DT) tests were carried out to investigate the influence of the geometry of guide groove on stress corrosion index of Kumamoto andesite. The fracture toughness was measured in the constant displacement rate, which was set to 2.07 MN/m$^{3}$2/ in average regardless of crack velocity. Stress corrosion indices, n were evaluated using specimens with rectangular, circular and triangular grooves and were 37, 36 and 38 in average, respectively. The n values were constant regardless of the groove geometry, however the DT specimen with triangular groove geometry showed the largest standard deviation in the relationship between crack velocity and stress intensity factor. The DT test was found to be effective in using a rectangular-grooved specimen and the width of the groove must be greater than the average grain size of minerals.

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.

Vertically Half Disc-Loaded Ultrawideband Monopole Antenna (VHDMA) with Horizontally Top-Loaded Small Disc (수평 원형 디스크가 로딩된 반원 디스크 초광대역 모노폴 안테나)

  • 이재욱;조춘식;김종면
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1051-1061
    • /
    • 2004
  • In this Paper, a new antenna(VHMDA) characteristics of half-circular/elliptical disc-loaded planar antennas with horizontally top-loaded small disc is studied by simulation and measurements with additional resonant structure. The transfer function characteristics of Gaussian pulse from the designed UWB transmitter antenna has been investigated. The radiation pattern of the proposed antenna in azimuth is nearly omni-directional response, which is usulally required in conventional monopole antenna. In addition to that, the simulation and measured results show that the return loss characteristics of VHDMA covers considerably large bandwidth with small area. From the measured results of the circular and half-circular disc-loaded monopole antennas with small disc mounted on the top, it is found that the half disc-loaded monopole antenna with additional structure can be comparable to the circular disc-loaded monopole antenna in respect o( size and electrical performances. Surface wave and dielectric losses often caused by the printed antenna using high dielectric constant does not occur in metallic planar antenna with good impedance matching and without lossy matching unit. This structure implies that the performance of return loss is directly related with the radiation efficiency.

Numerical Study on the Sealing Safety of a Valve Packing in a LPG Cylinder (LPG 용기용 밸브패킹의 누설안전에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.34-39
    • /
    • 2007
  • In this paper, the FEM result has been presented for a sealing safety between a valve packing and a valve seat during a open and close operation in a LPG cylinder. The sealing operation of a LPG valve is completed when the valve packing in which is made by a nylon-66 polymer is to stop a LP gas flow, which flows out from the outlet of a brass pipe in a LPG cylinder. The contact sealing mechanism of the valve may be classified by a flat contact of an unused valve packing and a circular groove contact of an used valve packing in a current LPG valve. Based on the FEM and experimental investigations the sealing force, 4.9 MPa for a flat contact mode of the unused valve packing is a little high compared to that of the used valve packing, which shows a circular groove contact geometry against a valve seat. But these sealing pressures for two contact modes are very low compared to the ultimate strenath 83 MPa of the nylon-66 and this may be designed with a excess strength of the valve.

  • PDF