Behavior of Non-buoyant Round Jet under Waves

파랑수역에서 비부력 원형 제트의 거동

  • 유용욱 (한국건설기술연구원 하천해안연구실) ;
  • 이종인 (한국건설기술연구원 하천해안연구실) ;
  • 김영택 (한국건설기술연구원 하천해안연구실)
  • Published : 2007.12.31

Abstract

The behavior of a non-buoyant turbulent round jet discharging horizontally was investigated experimentally. The instantaneous velocity field of the jet was obtained using the particle image velocimetry (PIV) method and used to calculate the mean velocity field by phase-averaging. This study tested regular waves with a relatively small wave height for a wavy environmental flow. The centerline and cross-sectional velocity profiles were reported to demonstrate the effect of the waves on the jet diffusion in respect of wave height and wave phase. The wave phase effect was studied for three phases: zero-upcrossing point, zero-downcrossing point, trough. From the results, it is found that the centerline velocity decreases and width of the cross-sectional profile increases as the wave height increases. In addition, the self-similarity of the cross-sectional profile appears to break down although the width of each case along the axial distance does not vary significantly. The phase effect is found to be relatively small compared to the wave height effect.

본 연구에서는 파랑이 존재하는 수역에서 수평방향으로 분사되는 비부력 원형 난류제트의 거동을 검토하기 위해 수리실험을 수행하였다. 난류제트의 유속은 PIV(particle image velocimetry)기법을 이용하여 측정하였으며, 측정된 순간유속장을 위상평균하여 평균유속장으로 계산하였다. 수리실험에서는 상대적으로 작은 파고의 규칙파가 사용되었으며, 파랑의 분산이 난류제트의 확산현상에 미치는 영향을 제트의 중심선유속과 횡단면유속의 변화를 통하여 관찰하였다. 또한 파랑의 위상변화에 따른 제트 거동을 파악하기 위하여 다른 세 위상순간에서 제트의 거동을 비교하였다. 제트의 중심선유속은 파고가 커짐에 따라 감소하였으며, 횡단면의 폭은 증가함을 알 수 있었다. 제트의 횡단면유속분포 특성인 자기상사성은 파고가 증가할수록 약해졌으나 축방향으로의 단면폭의 변화는 크지 않았다. 또한 파고에 대한 제트의 변화에 비해 파랑 위상에 대해서는 변화가 작음을 알 수 있었다.

Keywords

References

  1. 김영도, 서일원, 강시환, 오병철 (2000). 3차원 원역모형을 이용한 수중방류수의 근역 혼합특성 민감도 분석. 대한 토목학회논문집, 20(5B), 689-700
  2. 이재형, 서일원 (1996). 수중 다공확산에 의해 방류된 온수의 확산거동 예측. 대한토목학회논문집, 16(II-3), 281-290
  3. Andreopoulos, J. and Rodi, W. (1984). Experimental investigation of jets in a cross flow. Journal of Fluid Mechanics, 138, 93-127 https://doi.org/10.1017/S0022112084000057
  4. Antonia, R.A. and Bilger, R.W. (1973). An experimental investigation of an axisymmetric jet in a co-flowing air stream. Journal of Fluid Mechanics, 61, 805-822 https://doi.org/10.1017/S0022112073000959
  5. Camussi, R., Guj, G. and Stella, A. (2002) Experimental study of a jet in a crossflow at very low Reynolds number. Journal of Fluid Mechanics, 454, 113-144 https://doi.org/10.1017/S0022112001007005
  6. Chan, C.H.C. and Lam, K.M. (1998). Centerline velocity decay of a circular jet in a counterflowing stream. Physics of Fluids, 10, 637-644 https://doi.org/10.1063/1.869589
  7. Chin, D.A. (1987). Influence of surface waves on outfall dilution. Journal of Hydraulic Engineering, 113, 1006-1018 https://doi.org/10.1061/(ASCE)0733-9429(1987)113:8(1006)
  8. Chin, D.A. (1988). Model of buoyant jet-surface wave interaction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 114, 331-345 https://doi.org/10.1061/(ASCE)0733-950X(1988)114:3(331)
  9. Chu, P.C.K., Lee, J.H. and Chu, V.H. (1999). Spreading of turbulent round jet in coflow. Journal of Hydraulic Engineering, 125, 193-204 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(193)
  10. Chyan, J.M. and Hwung, H.H. (1993). On the interaction of a turbulent jet with waves. Journal of Hydraulic Research, 31, 791-810 https://doi.org/10.1080/00221689309498819
  11. Cowen, E.A., Chang, K.-A. and Liao, Q. (2001). A single camera coupled PTV-LIF technique. Experiments in Fluids, 31, 63-73 https://doi.org/10.1007/s003480000259
  12. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H. (1979) Mixing in inland and coastal waters, Academic Press, New York
  13. Hussein, H.J., Capp, S.P. and George, W.K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric turbulent jet. Journal of Fluid Mechanics, 258, 31-75 https://doi.org/10.1017/S002211209400323X
  14. Koole, R. and Swan, C. (1994). Measurement of a 2-D nonbuoyant jet in a wave environment. Coastal Engineering, 24, 151-169 https://doi.org/10.1016/0378-3839(94)90031-0
  15. Lam, K.M. and Chan, C.H.C. (2002). Time-averaged mixing behavior of circular jet in counterflow: Velocity and concentration measurements. Journal of Hydraulic Engineering, 128, 861-865 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:9(861)
  16. Mori, N. and Chang, K.-A. (2003). Experimental study of a horizontal jet in a wavy environment. Journal of Engineering Mechanics, 129, 1149-1155 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:10(1149)
  17. Pope, S.B. (2000). Turbulent flows, Cambridge University Press, Cambridge, England
  18. Rajaratnam, N. (1976). Turbulent jets, Elsevier Scientific, Amsterdam, The Netherlands
  19. Shuto, N. and Ti, L.H. (1974). Wave effects on buoyant plumes. Proceedings of the 14th International Conference on Coastal Engineering, Copenhagen, 2199-2208