• Title/Summary/Keyword: 비와 비례

Search Result 1,747, Processing Time 0.03 seconds

The Analysis of Proportional Reasoning Tasks in Elementary School Mathematics Textbooks (초등학교 수학 교과서에 제시된 비례추론 과제의 분석)

  • Song, Dong Hyun;Park, Young Hee
    • Education of Primary School Mathematics
    • /
    • v.25 no.1
    • /
    • pp.57-79
    • /
    • 2022
  • Current mathematics It is necessary to ensure that ratio and proportion concept is not distorted or broken while being treated as if they were easy to teach and learn in school. Therefore, the purpose of this study is to analyze the activities presented in the textbook. Based on prior work, this study reinterpreted the proportional reasoning task from the proportional perspective of Beckmann and Izsak(2015) to the multiplicative structure of Vergnaud(1996) in four ways. This compared how they interpreted the multiplicative structure and relationships between two measurement spaces of ratio and rate units and proportional expression and proportional distribution units presented in the revised textbooks of 2007, 2009, and 2015 curriculum. First, the study found that the proportional reasoning task presented in the ratio and rate section varied by increasing both the ratio structure type and the proportional reasoning activity during the 2009 curriculum, but simplified the content by decreasing both the percentage structure type and the proportional reasoning activity. In addition, during the 2015 curriculum, the content was simplified by decreasing both the type of multiplicative structure of ratio and rate and the type of proportional reasoning, but both the type of multiplicative structure of percentage and the content varied. Second, the study found that, the proportional reasoning task presented in the proportional expression and proportional distribute sections was similar to the previous one, as both the type of multiplicative structure and the type of proportional reasoning strategy increased during the 2009 curriculum. In addition, during the 2015 curriculum, both the type of multiplicative structure and the activity of proportional reasoning increased, but the proportional distribution were similar to the previous one as there was no significant change in the type of multiplicative structure and proportional reasoning. Therefore, teachers need to make efforts to analyze the multiplicative structure and proportional reasoning strategies of the activities presented in the textbook and reconstruct them according to the concepts to teach them so that students can experience proportional reasoning in various situations.

Study on Proportional Reasoning in Elementary School Mathematics (초등학교 수학 교과에서의 비례 추론에 대한 연구)

  • Jeong, Eun Sil
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.4
    • /
    • pp.505-516
    • /
    • 2013
  • The purpose of this paper is to analyse the essence of proportional reasoning and to analyse the contents of the textbooks according to the mathematics curriculum revised in 2007, and to seek the direction for developing the proportional reasoning in the elementary school mathematics focused the task variables. As a result of analysis, it is found out that proportional reasoning is one form of qualitative and quantitative reasoning which is related to ratio, rate, proportion and involves a sense of covariation, multiple comparison. Mathematics textbooks according to the mathematics curriculum revised in 2007 are mainly examined by the characteristics of the proportional reasoning. It is found out that some tasks related the proportional reasoning were decreased and deleted and were numerically and algorithmically approached. It should be recognized that mechanical methods, such as the cross-product algorithm, for solving proportions do not develop proportional reasoning and should be required to provide tasks in a wide range of context including visual models.

  • PDF

Teaching Proportional Reasoning in Elementary School Mathematics (초등학교에서 비례 추론 지도에 관한 논의)

  • Chong, Yeong Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.1
    • /
    • pp.21-58
    • /
    • 2015
  • The aim of this study is to look into the didactical background for teaching proportional reasoning in elementary school mathematics and offer suggestions to improve teaching proportional reasoning in the future. In order to attain these purposes, this study extracted and examined key ideas with respect to the didactical background on teaching proportional reasoning through a theoretical consideration regarding various studies on proportional reasoning. Based on such examination, this study compared and analyzed textbooks used in the United States, the United Kingdom, and South Korea. In the light of such theoretical consideration and analytical results, this study provided suggestions for improving teaching proportional reasoning in elementary schools in Korea as follows: giving much weight on proportional reasoning, emphasizing multiplicative comparison and discerning between additive comparison and multiplicative comparison, underlining the ratio concept as an equivalent relation, balancing between comparisons tasks and missing value tasks inclusive of quantitative and qualitative, algebraic and geometrical aspects, emphasizing informal strategies of students before teaching cross-product method, and utilizing informal and pre-formal models actively.

The historical developments process of the representations and meanings for ratio and proportion (비와 비례 개념의 의미와 표현에 대한 역사적 발달 과정)

  • Park, Jung-Sook
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.53-66
    • /
    • 2008
  • The concepts of ratio and proportion are familiar with students but have difficulties in use. The purpose of this paper is to identify the meanings of the concepts of ratio and proportion through investigating the historical development process of the meanings and representations of them. The early meanings of ratio and proportion were arithmetical meanings, however, geometrical meanings had taken the place of them because of the discovery of incommensurability. After the development of algebraic representation, the meanings of ratio and proportion have been growing into algebraic meanings including arithmetical and geometrical meanings. Through the historical development process of ratio and proportion, it is observable that the meanings of mathematical concepts affect development of symbols, and the development of symbols also affect the meanings of mathematical concepts.

  • PDF

Analysis on Ratio and Proportion Concepts: A Story of a Fourth Grader (4학년 아동의 비와 비례 개념 분석)

  • Lee Jong-Euk
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.157-177
    • /
    • 2006
  • The concepts of ratio and proportion do not develop in isolation. Rather, they are part of the individual's multiplicative conceptual field, which includes other concepts such as multiplication, division, and rational numbers. The current study attempted to clarify the beginning of this development process. One fourth student, Kyungsu, was encourage to schematize his trial-and-error-based method, which was effective in solving so-called missing-value tasks. This study describes several advancements Kyungsu made during the teaching experiment and analyzes the challenges Kyungsu faced in attempting to schematize his method. Finally, the mathematical knowledge Kyungsu needed to further develop his ratio and proportion concepts is identified. The findings provide additional support for the view that the development of ratio and proportion concepts is embedded within the development of the multiplicative conceptual field.

  • PDF

A Study on the Solving Proportion Problems of Mathematics Textbooks and Proportional Reasoning in 6th Graders (초등학교 6학년 학생들의 교과서 비례 문제 해결과 비례 추론에 관한 연구)

  • Kwan, Mi-Suk;Kim, Nam-Gyunl
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.2
    • /
    • pp.211-229
    • /
    • 2009
  • The purpose of this study is analysis of to investigate relation proportion problem of mathematics textbooks of 7th curriculum to proportional reasoning(relative thinking, unitizing, partitioning, ratio sense, quantitative and change, rational number) of Lamon's proposal at sixth grade students. For this study, I develop two test papers; one is for proportion problem of mathematics textbooks test paper and the other is for proportional reasoning test paper which is devided in 6 by Lamon. I test it with 2 group of sixth graders who lived in different region. After that I analysis their correlation. The result of this study is following. At proportion problem of mathematics textbooks test, the mean score is 68.7 point and the score of this test is lower than that of another regular tests. The percentage of correct answers is high if the problem can be solved by proportional expression and the expression is in constant proportion. But the percentage of correct answers is low, if it is hard to student to know that the problem can be expressed with proportional expression and the expression is not in constant proportion. At proportion reasoning test, the highest percentage of correct answers is 73.7% at ratio sense province and the lowest percentage of that is 16.2% at quantitative and change province between 6 province. The Pearson correlation analysis shows that proportion problem of mathematics textbooks test and proportion reasoning test has correlation in 5% significance level between them. It means that if a student can solve more proportion problem of mathematics textbooks then he can solve more proportional reasoning problem, and he have same ability in reverse order. In detail, the problem solving ability level difference between students are small if they met similar problem in mathematics text book, and if they didn't met similar problem before then the differences are getting bigger.

  • PDF

The Comparison and Analysis of Models on Ratio and Rate in Elementary Mathematics Textbooks : Centering on Multiplicative Perspectives on Proportional Relationships and the Structure of Proportion Situations (초등 수학 교과서 비와 비율 단원의 모델 비교 분석 -비례에 대한 곱셈적 사고 및 비례 상황의 구조를 중심으로)

  • Park, Sun Young;Lee, Kwangho
    • Education of Primary School Mathematics
    • /
    • v.21 no.2
    • /
    • pp.237-260
    • /
    • 2018
  • This study investigated the models of four countries' elementary mathematics textbooks in Ratio and Rate and identified how multiplicative perspectives on proportional relationships and the structure of proportion situations are reflected in the textbooks. For this, textbooks of 5th and 6th grade textbooks in Korea Japan, Singapore and U.S. are compared and analyzed. As a result, we can find multiplicative perspectives on proportional relationships and the structure of proportion situations on pictorial models, ratio tables, double number lines and double tape diagrams. Also, the development of Japanese textbooks from multiple batches perspectives to variable parts perspectives and the examples of the use with two models together implied the connection and union of two multiplicative perspectives. Based on these results, careful verification and discussion for the next textbook is needed to develop students' proportional reasoning and teach some effective reasoning strategies. And this study will provide the implication for what kinds of and how visual models are presented in the next textbook.

An Analysis on the Proportional Reasoning Understanding of 6th Graders of Elementary School -focusing to 'comparison' situations- (초등학교 6학년 학생들의 비례 추론 능력 분석 -'비교' 상황을 중심으로-)

  • Park, Ji Yeon;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.105-129
    • /
    • 2016
  • The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.

Children's Proportional Reasoning on Problem Type of Proportion according to Ill-Structured Degree (비(非)구조화된 정도에 따른 비례 문제 유형에서 나타난 초등학생의 비례추론에 관한 연구)

  • Kim, Min Kyeong;Park, Eun Jeung
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.4
    • /
    • pp.719-743
    • /
    • 2013
  • Proportional reasoning is considered as a difficult concept to most elementary school students and might be connect to functional thinking, algebraic thinking, and mathematical thinking later. The purpose of this study is to analyze the sixth graders' development level of proportional reasoning so that children's problem solving processes on different proportional problem items were investigated in a way how the problem type of proportion and the degree of ill-structured affect to their levels. Results showed that the greater part of participants solved problems on the level of proportional reasoning and various development levels according to type of problem. In addition, they showed highly the level of transition and proportional reasoning on missing value problems rather than numerical comparison problems.

  • PDF

A study on the Sixth Graders' Solving Proportional problems in the 7th curriculum Mathematics Textbooks (초등학교 6학년의 교과서 비례 문제 해결에 관한 연구)

  • Kwon, Mi-Suk;Kim, Nam-Gyun
    • Education of Primary School Mathematics
    • /
    • v.12 no.2
    • /
    • pp.117-132
    • /
    • 2009
  • The purpose of this study was analysis on types of strategies and errors when the sixth grade students were solving proportion problems of mathematics textbooks. For this study, proportion problems in mathematics textbooks were investigated and 17 representative problems were chosen. The 277 students of two elementary schools solved the problems. The types of strategies and errors in solving proportion problems were analyzed. The result of this study were as follows; The percentage of correct answers is high if the problems could be solved by proportional expression and the expression is in constant rate. But the percentage of correct answers is low, if the problems were expressed with non-constant rate.

  • PDF