• Title/Summary/Keyword: 비선형 응력-변형률 관계

Search Result 85, Processing Time 0.025 seconds

Nonlinear Analysis of Stress-strain for RC Panel Subjected to Shear (순수전단이 작용하는 RC Panel의 응력-변형률 비선형해석)

  • Cha, Young-Gyu;Kim, Hak-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.175-181
    • /
    • 2010
  • The three truss models(equilibrium truss model, Mohr compatibility truss model, and the soften truss model) based on a rotating angle is called the rotating-angle model. The three rotating-angle models have a common weakness: they are incapable of predicting the so-called "contribution of concrete". To take into account this "contribution of concrete", the modern truss model(MCFT, STM) treats a cracked reinforced concrete element as a continuous material. By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, MTM is capable of producing the nonlinear analysis of reinforced concrete structures composed of membrane element. In this paper, an efficient algorithm is proposed for the solution of proposed model incorporated with failure criteria. This algorithm is used to analyze the behavior of reinforced membrane element using the results of Hsu test.

Effective Moment of Inertia of Flexural Members Based on the Concrete Stress-Strain Curve in EC-2 (EC-2의 콘크리트 응력-변형률 곡선에 기반한 휨부재의 유효단면2차모멘트)

  • Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.655-663
    • /
    • 2016
  • The present study shows the moment-average curvature relationship and effective inertia moment of RC beams obtained from the nonlinear analysis based on the parabola-rectangular stress-strain curve defined in EC-2 code. The variables examined are concrete strength and steel ratio, and moment-average curvature relationship and effective inertia moment obtained are compared with those of the current KCI provisions. As the results of the comparison, the followings could be said: Since the KCI provisions(the Branson method) were originally derived based on the experimental data ranged from 2.2 to 4 of $M/M_{cr}$ and 1.3 to 3.5 of $I_{ut}/I_{cr}$, thereby within these ranges the inertia moments obtained from the nonlinear analysis are closely agreed with those predicted by the Branson method. However, beyond those range the remarkable difference could be found between the two results. In particular, for beams having low steel ratio the inertia moment resulted from the nonlinear analysis are significantly smaller than those obtained from the KCI(Branson) method. This result may imply that the deflection of lightly reinforced members, such as slabs in buildings, becomes much larger than those calculated according to the current design provisions.

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

Modeling Strain Rate-dependent Behavior in Consolidation of Natural Clay (자연점토의 변형률속도 의존적인 압밀거동의 해석)

  • ;Leroueil, S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.17-28
    • /
    • 1999
  • In order to analyze effects of strain rate on consolidation of natural clay, this paper presents a nonlinear elasto viscoplastic model in which viscoplastic behavior is modeled by a unique effective stress-strain-strain rate relationship (equation omitted). The predicted values using numerical analysis are compared with measured ones in several laboratory tests such as creep test, multistage load test, and relaxation test for Berthierville clay. It is possible to estimate consolidation behavior of natural clay with reasonable accuracy using the proposed nonlinear viscoplastic model.

  • PDF

Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep (건조수축과 크리프에 의한 합성형 거더의 재령종속적 거동)

  • Ahn, Sung-Soo;Sung, Won-Jin;Kang, Byeong-Su;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.109-116
    • /
    • 2006
  • An incremental approach to predict the time dependent flexural behavior of composite girder is presented in the framework of incremental finite element method. Age dependent nature of creep, shrinkage, and maturing of elastic modulus of concrete is prescribed in the incremental tangent description of constitutive relation derived based on the first order Taylor series expansion applying to the total from of stress-strain relation. The loop phenomenon in which age dependent nature of concrete causes stress redistribution and it causes creep in turn is taken into account in the formulation through the incremental representation of constitutive relation. The developed algorithm predicts the time dependent deflections of 4.8m long two span double composite box girder subjected to shrinkage, maturing of elastic modulus, and creep initially induced by self weight. Comparison shows a good agreement between the predicted and measured results.

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Modification of the Sloan치s Substepping Scheme for the Numerical Stress Integration of Elasto-plastic Constitutive Models (탄소성 구성 모델의 수치 응력 적분을 위한 단계분할 절차에 관한 연구)

  • 김범상;정충기
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.129-140
    • /
    • 1998
  • Elasto-plastic finite element analysis of geotechnical boundary value problems necessitate the stress integration for the known strain increments. For the elasto-plastic constitutive model, the stress integration is generally achieved by numerical schemes, because analytical integration is impossible for general strain path. In this case, the accuracy of numerical stress integration has an important role on the overall accuracy of nonlinear finite element solution. In this study, the Sloan's substepping method which is one of explicit integration methods has been adopted and iris applicability has been checked. The unstability and inaccuracy of ifs results initiated from initial stress level were revealed. So. a new modified numerical integration method which employs the basic concept of modified Euler scheme for error control is proposed and accuracy and stability of the solutions are confirmed by triaxial test simulation.

  • PDF

Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members (비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델)

  • Lee, Gi-Yeol;Ha, Tae-Gwan;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.745-754
    • /
    • 2007
  • This paper presents a unified modeling technique for tension stiffening effect in structural concrete members. The model is mathematically derived from the bond stress-slip relationships which account for splitting crack. The relationships in CEB-FIP Model Code 1990 and Eurocode 2 are employed together with the assumptions of a linear slip distribution along the interface and the uniform condition of concrete tensile contribution for the mid section of cracked member at the stabilized cracking stage. With these assumptions, a model of tension stiffening effect is proposed by accounting for the force equilibrium and strain compatibility condition associated to the steel strain and concrete contribution by bond stress. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured behavior.

Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer (난류유동 및 대류열전달에 대한 비선형 난류모형의 개발)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1569-1580
    • /
    • 2001
  • A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

Prediction of Compressive Behavior of FRP-Confined Concrete Based on the Three-Dimensional Constitutive Laws (3차원 구성관계를 고려한 FRP-구속 콘크리트의 압축거동 예측모델)

  • Cho Chang-Geun;Kwon Min-ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.501-509
    • /
    • 2004
  • The proposed model can predict the compressive behaviors of concrete confined with fiber reinforced polymer (FRP) jacket. To model confining concrete by FRP jackets, the hypoelasticity-based constitutive law of concrete In tri-axial stress states has been presented. The increment of strength of concrete has been determined by the failure surface of concrete in tri-axial states, and its corresponding peak strain is computed by the strain enhancement factor that is proposed in the present study, Therefore, the newly proposed model is a load-dependent confinement model of concrete wrapped by FRP jackets to compare the previous models which are load-independent confinement models. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimension. The developed model is implemented into the incremental analysis of compressive tests. The verification study with several different experiments shows that the model is able to adequately capture the behavior of the compression test by including better estimations of the axial responses as well as the lateral response of FRP-confined concrete cylinders.