DOI QR코드

DOI QR Code

Nonlinear Analysis of Stress-strain for RC Panel Subjected to Shear

순수전단이 작용하는 RC Panel의 응력-변형률 비선형해석

  • 차영규 (호남대학교 토목환경공학과) ;
  • 김학수 (호남대학교 토목환경공학과)
  • Received : 2009.09.09
  • Accepted : 2009.10.12
  • Published : 2010.01.30

Abstract

The three truss models(equilibrium truss model, Mohr compatibility truss model, and the soften truss model) based on a rotating angle is called the rotating-angle model. The three rotating-angle models have a common weakness: they are incapable of predicting the so-called "contribution of concrete". To take into account this "contribution of concrete", the modern truss model(MCFT, STM) treats a cracked reinforced concrete element as a continuous material. By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, MTM is capable of producing the nonlinear analysis of reinforced concrete structures composed of membrane element. In this paper, an efficient algorithm is proposed for the solution of proposed model incorporated with failure criteria. This algorithm is used to analyze the behavior of reinforced membrane element using the results of Hsu test.

평형트러스모델, Mohr적합트러스모델, 그리고 연성트러스모델은 회전각에 기초하기 때문에 회전각모델이라 불리 운다. 이러한 회전각모델들은 콘크리트기여도를 예측할 수 없는 단점이 있다. 콘크리트 기여 성분을 계산할 수 있는 MCFT(Modified Compression Field Theory)나 RA-STM(Rotating Angle-Softening Truss Model) 같은 최근 트러스모델(Modern Truss Model, MTM)은 균열이 발생한 철근콘크리트요소를 연속체 재료로 취급한다. 또한 MTM은 평형조건과 적합조건 그리고 2축 상태에서 콘크리트의 연성 응력-변형률 관계를 이용하여 비선형해석을 수행하고 있다. 본 연구는 전단응력-변형률의 전체 이력 상태를 모두 계산하지 않고, 철근항복과 스트럿 압괴(crushing failure) 파괴기준을 이용하여 해를 찾는 방법으로 수렴속도를 개선한 것이다. 이 알고리즘을 이용하여 Hsu가 실험한 9개의 전단응력-변형률 자료를 분석하였다.

Keywords

References

  1. ASCE-ACI Committee 426, "The Shear Strength of Reinforced Concrete Members", Journal of Structural Division, ASCE, Vol. 99, No. 6, 1973, pp.1091-1187.
  2. ASCE-ACI Committee 445, "Recent Approaches to Shear Design of Structural Concrete", Journal of Structural Engineering, ASCE, Vol. 124, No. 5, 1998, pp.1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  3. AASHTO LRFD, "Bridge Design Specification and Commentary, " First Edition, American Association of State Highway and Transportation Officials, Washington, D.C, 1994, p.1091.
  4. CEB/FIP, CEB-FIP Model Code for Concrete Structures, Bulletin d' Information No. 213/214, 1993.
  5. Collins, M. P., "A General Shear Design Method", ACI Journal, Vol. 93, No. 1, 1986, pp.36-45.
  6. Eurocode 2, Design of Concrete Structures-Part I, General Rules and Rules for Buildings, British Standard Institution, London, 1992
  7. Hsu, T.T.C, Unified Theory of Reinforced Concrete, CRC Press, Boca Raton, Fla. 1991, pp.256-360.
  8. Hsu, T.T.C., Li-Xin, B.Z., "Nonlinear Analysis of Membrane Elements by Fixed-Angle Softened-Truss Model", ACI Structural Journal, Vol. 94, No. 5, 1997, pp. 483-492.
  9. Vecchio, F. J., Collins, M. P., "The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear", ACI Journal, Vol. 83, No. 2, 1986, pp.219-231.