2차원 조파수조 내에서 취득된 규칙파 실험데이터를 머신러닝 기법으로 분석하여 천수 변형을 경험한 파랑으로부터 조파기의 입력파고를 예측하는 모델을 수립하고 그 성능을 검증하였다. 이를 위해 가장 대표적인 머신러닝 기법인 인공신경망(NN)과 비모수 회귀분석 방법 중 하나인 가우시안 과정 회귀(GPR) 모델을 각각 수립하고 두 모델의 예측 성능을 비교하였다. 전체 실험자료를 모두 한꺼번에 활용한 경우와 쇄파 발생 여부에 따라 자료를 구분한 경우에 대해 독립적으로 분석을 수행하였다. 데이터를 구분하지 않은 경우에는 NN 및 GPR 모델 모두 조파기 입력파고 값과 계측값 사이의 오차가 비교적 크게 나타났다. 반면에 데이터를 비쇄파 및 쇄파 조건으로 구분하면 조파기 입력파고의 예측 정확도가 크게 향상되었다. 두 모델 중에서는 NN 모델보다 GPR 모델의 성능이 전반적으로 더 우수한 것으로 나타났다.
다양한 선행연구에서 준거가격효과는 실증적 지지를 받아온 것이 사실이다. 그러나 대부분의 선행연구에서 간과된 부분은 설명되지 않은 소비자 반응의 이질성이 준거가격에 반영되어 실재하지 않는 효과가 마치 유의한 것으로 나타날 수도 있다는 것이다(Chang, Siddarth, and Weinberg 1999; Bell and Lattin 2000). 또 다른 차원의 이질성으로서, 고려상표군의 이질성이 반영되지 않을 경우 모델에 포함된 변수의 모수추정치에 왜곡현상이 나타날 수 있음을 Meyer and Kahn(1991)이 지적한 바 있다. 이러한 선행연구의 문제점을 고려하여 이 연구에서는 반응의 이질성과 고려상표군의 이질성을 모두 반영한 모델을 적용함으로써 보다 정확한 준거가격효과의 추정을 시도하였다. 또한 소비자별 고려상표군의 이질성을 반영한 준거가격 측정치를 새롭게 제안하여 검증하고자 하였다. 실증분석결과, 제안된 준거가격 측정치가 선행연구에서 사용한 측정치에 비해 모델적합도와 예측타당성을 향상시키는 것으로 나타났다. 이 결과는 준거가격 형성과정에도 고려상표군의 이질성이 반영됨을 실증하는 것이다. 고려상표군의 이질성이 반영될 경우, 선행연구의 준거가격 측정치에 비해서, 제안된 준거가격 측정치의 평균이 높게 나타났으며, 표준편차는 감소한 것으로 나타났다. 이 연구에서 제안된 측정치의 실제적인 적용 측면을 본다면, Greenleaf(1995)의 연구에서처럼, 최적의 가격정책이 손실회피(loss aversion)의 크기, 즉, 준거의존(reference-dependent) 모델상의 준거가격에 의존한다면 제안된 측정치가 유용하게 사용될 수 있을 것으로 판단된다. 최대화해야 할 이익함수에 포함된 준거가격 측정치의 정확성이 최적가격결정을 좌우하기 때문이다. 따라서, 준거가격모델에 근거하여 최적가격을 추정할 경우, 모델자체에 고려상표군과 반응의 이질성을 반영할 뿐만 아니라, 준거가격 측정치 또한 고려상표군의 이질성을 반영하는 것이 바람직할 것으로 판단된다.
최근 급격한 봄철 기온 상승과 기후변화의 영향으로 한반도에 분포하고 있는 아까시나무의 개화 시기가 변화하면서 지역간에 동시 개화 현상(simultaneous blooming)이 관측되고 있다. 이러한 변화는 국내 양봉 산업에 큰 변화를 초래하였고, 이로 인해 정확도 높은 아까시나무 개화시기 정보에 대한 수요가 증가하고 있다. 따라서, 본 연구를 통해 아까시나무의 지역별 개화 시기 변화를 잘 설명할 수 있는 신뢰도 높은 개화 시기 예측 모형을 개발하고자 하였다. 이를 위해 지난 12년(2006~2017년)간 전국 26개 지점에서 관측된 아까시나무 만개일 자료와 과거 일기온 복원 자료를 활용하여 봄철 기온 및 아까시나무 만개일 변화의 경향성을 권역별로 파악하고, 과정기반모형을 활용하여 지역 통합 모형(SM)과 함께 지역적 특성을 반영하는 세 모형-SM에 지점별 보정계수를 도입한 수정 통합 모형(MSM), 권역별로 모수를 추정하는 권역별 통합 모형(GM), 관측 지점별로 모수를 추정하는 지역 모형(LM)-을 도출, 성능을 비교하였다. 기온 및 만개일의 경향 분석 결과, 남부 지역에 비해 봄철 기온 상승률이 2배 이상 높았던 중북부 내륙 지역의 경우 만개일이 빠른 속도로 앞당겨져, 결과적으로 남서부 해안 지역과의 만개일 차이는 1년에 0.7098일씩 감소하였다(p-value=0.0417). 전체 지역에 대한 모형의 성능 비교 결과, 지역 특이성이 반영되지 않은 SM에 비해서 MSM은 24% 이상, LM은 15% 이상 감소한 RMSE 값을 나타냈다. 또한 LM과 MSM의 예측 알고리즘을 전국 범위로 확대하여 4년 간(2014~2017년) 16개의 추가 관측 지점을 대상으로 검증한 결과, LM에 코크리깅(Co-kriging)기법을 적용한 방법이 보정계수 전국 분포도를 추정하여 SM을 보정하는 방법보다 예측력이 더 뛰어났으며, 오차의 분포는 두 모형 간에 통계적으로 유의한 차이를 보였다(RMSE: p-value=0.0118, Bias: p-value=0.0471). 본 연구는 아까시나무의 개화 시기 예측에 있어 지역 단위 예측의 신뢰도를 향상시키고 모형을 넓은 지역 범위로 확대, 적용하기 위한 방안을 제시하였다.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
제9권2호
/
pp.154-164
/
1998
주의력결핍 과잉운동장애(ADHD)아동에서 약물치료가 주의력결핍이나 과잉운동성, 충동성과 비순응적이고 공격적인 행동을 감소시키는데 효과적이나 여러 가지 습관화된 충동적인 행동패턴이나 문제해결 방식을 변화시키고 바람직한 행동과 자기조절능력을 학습시키는데 효과적이지 못하다는 제한점이 있어 왔다. 따라서 본 연구에서는 주의력결핍 과잉운동장애 아동을 위해 고안된 사회기술훈련 프로그램을 실시한후 사회기술 및 증상의 변화를 알아보고자 한다. 본원 외래 및 입원환자중 주 진단을 ADHD로 받은 $6{\sim}13$세 연령의 아동 16명을 대상으로, 순수한 ADHD 아동군, 품행장애가 동반된 ADHD 아동군, 지능저하 등 다른 질환군이 동반된 ADHD 아동군으로 동반증상에 따라 3집단으로 나누어 10주간의 사회기술훈련 프로그램을 실시하였다. 증상의 변화 및 사회기술의 변화를 보기위해 아동행동조사표(Child Behavior Checklist, CBCL), 주의력결핍 과잉운동장애 포괄적 교사평정척도(The ADD-H Comprehensive Teacher's Rating Scale:ACTeRS), 사회기술 평가척도(Social Skills Rating Scale:SSRS), Matson의 아동 사회기술 평가척도(Matson Evaluation of Social Skills for Youth:MESSY)를 치료전후에 실시하였다. 각 집단에서 치료전후의 효과에 대한 비교는 비모수검증인 Wilcoxon Signed Ranks test로 검증하였고, 치료전후의 변화의 정도에 대한 각 집단사이의 비교는 Kruskal-Wallis test로 검증하였다. 각 집단에서 치료전후의 효과에 대해 비교했을 때 품행장애가 공존된 집단에서 치료전에 비해서 아동행동조사표의 문제행동목록 중 공격성 요인에서 유의한 감소(p<.05)가 보였으며, 사회적 능력 항목중 활동성과 사회성에서 유의한 차이(p<.0001)를 보였다. 지능저하등 다른질환군이 동반된 군에서는 사회기술 평가 척도의 사회기술 항목에서 유의한 증가(p<.05)를 보였다. 그러나 각 집단간의 치료효과에 대해서는 세 집단사이에서 유의한 차이는 보이지 않았다. 위 결과로 보아 주의력결핍 과잉운동장애 아동에서 사회기술훈련 치료프로그램은 통계적으로 유의미할 만한 사회기술 향상은 보이지 않았다. 반면 품행장애가 동반된 군에서 공격적 행동의 감소를 가져오고 인지능력이 떨어진 군에서 사회기술 호전을 보이는 등 아동의 특성 및 동반증상에 따라 사회기술의 호전 및 증상의 변화에 도움이 됨을 확인할 수 있었다.
본 연구는 국내에서 아직 미흡한 조류 번식지 예측 모형을 이용해 참매의 서식지 예측 및 대체번식지로서 이용 가능한 지역을 선정하고, 향후 참매 번식 가능지역을 대상으로 보호관리 지역을 확대할 수 있는 근거를 제시하기 위한 방안이다. 참매의 번식지는 현장조사에서 확인된 둥지(N=10)를 이용하였으며, 출현지점은 제3차자연환경조사를 통해 확인된 참매출현지점(N=23)을 활용해 분석하였다. 모형변수로는 지형인자 4가지, 자연환경인자(식생) 3가지, 거리인자 7가지, 기후변수 9가지를 활용하였다. 활용변수 중 Random sampling을 통해 확보된 비출현 좌표와 출현좌표간 비모수 검증을 통해 최종 환경변수를 선정하였다. 유의성 검증을 통해 선택된 변수는 번식지 대상 10가지, 출현지점 대상 7가지였으며, 이 변수를 활용해 최종 서식지 예측 모형(MaxEnt)을 구축하였다. 모델 구축결과 번식에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 혼효림 과의 거리, 입목밀도, 경급의 순이었으며, 출현지점에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 수계와의 거리, 경작지와의 거리, 경사도의 순이었다. 번식지점을 대상으로 한 모델링은 기후환경과 숲 내부에서 번식하는 참매의 특성이 반영된 것으로 판단된다. 예상서식지는 충청북도 중부 이북지역으로 예상되었으며, 그 면적은 $189.5km^2$(2.55%)였다. 충북 이남지역은 청주와 충주 등의 비교적 큰 도시가 발달되어 있는 반면 충청북도 북부지역의 경우 산림과 경작지가 고루 발달되어 있어 번식에 있어 일정한 세력권과 먹이원이 필요한 참매로서는 번식에 유리한 지역일 것으로 판단된다. 출현지점 대상으로 한 모델링은 면적이 $3,071km^2$(41.38%)으로 확인되었으며, 이는 출현지점을 대상으로 하여 단순이동 관찰 및 계절적인 변동 미고려 등의 한계가 있기 때문에 번식지점을 대상으로 한 모델링보다 광범위한 서식예상지역을 예측하였다. 결과에서 확인된 예측지점은 번식지를 대상으로 하였을 경우 정밀한 서식예측이 가능하나, 둥지의 특성상 확인되는 지점이 적고, 참매의 행동영역을 반영하지 못하는 단점이 있다. 반면 출현지점을 대상으로 하였을 경우 더 광범위한 지점에 대한 결과 도출이 가능하였으나, 단순 이동이나 지속적인 이용실태를 반영하지 못하기 때문에 정밀도에서는 다소 떨어진다고 할 수 있다. 다만 이러한 결과들을 통해 참매의 서식지를 예측할 수 있으며, 특히 정밀한 번식지역의 예측자료는 환경영향평가나 개발계획 수립시 서식지 모형 결과를 도입하여 반영할 필요성이 있다.
목적: 본 연구의 목적은 CPM (Continuous Passive Motion)을 뇌졸중 환자의 손 기능 및 수부 근력 재활에 사용하고 그 영향을 살펴보는데 있다. 연구방법 : 본 연구의 대상자는 뇌졸중으로 인한 편마비 증상을 가진, Brunnstrom 4-6단계에 해당하는 치료후 18개월 이내의 급성기 환자 3명이다 연구방법은 3명의 대상자에 대하여 단일사례 (A-B) 실험설계를 사용하였으며 CPM의 영향을 검사하기 위해 젭슨수지기능, 퍼듀페그보드, 수부근력 세 가지를 측정하였다. CPM 적용기간은 3주였으며, 적용회수는 하루 2회, 매회 20분씩, 총 30회기였다. 연구결과: 수부근력 측정 중 손끝잡기에서 대상자 2명의 값이 변화가 없었다. 그 외의 젭슨수지기능, 퍼듀페그보드, 수부근력 검사에서는 CPM 적용 후의 검사 결과가 향상되었다. 결과의 유효성 검증을 위하여 비모수적 통계방법인 Wilcoxon signed ranks test를 실시한 결과 모든 항목에 대한 P-Value가 0. 05 보다 큰 값이 나와 처치 전 후 값의 차이가 통계적으로는 유의미하지 않다는 결과를 얻었다. 결론: 참여 대상자 수가 적고 프로그램 적용 기간이 짧은 제한점이 있으나, 수부 재활을 위해 실시한 CPM이 연구대상자 전원의 손 기능 및 근력 향상에 영향을 주었다는 것을 확인하였다. 이는 주로 하지 기능과 근력 향상을 위해 사용되는 CPM이 급성기 뇌졸중 환자의 수부 치료에도 유용하게 사용될 수 있음을 보여준다.
이 연구에서는 상용 디지털 카메라를 이용하여 야간에 촬영된 월면 영상을 분석하여 야간의 대기 광학두께와 에어로솔 광학두께를 추정하였다. 기본적으로 랑리회귀법을 이용하였으며 구름이 없고 대기의 광학적 특성이 비교적 안정한 날에 관측을 수행하였다. 카메라의 적색(R), 녹색(G), 청색(B) 채널의 파장별 반응함수를 이용하여 월광관측에 대한 유효 중심파장 및 레일리 광학두께를 추정하였으며, 랑리 회귀법에서 유도된 대기광학두께로부터 레일리 광학두께를 제하여 에어로솔 광학 두께를 산출하였다. 야간에는 독립적인 방법으로 산출된 검증자료나 다른 에어로솔 광학두께 자료가 거의 없으므로 월면 관측이 이루어지기 수 시간 전의 주간에 정밀한 태양분광광도계로 측정된 에어로솔 광학두께 자료와 MODIS 위성센서 관측으로부터 산출된 에어로솔 광학두께 자료를 본 연구에서 월면 관측을 통해 산출된 자료와 비교하였다. 비교 결과 R, G, B 채널에서 대략 0.1정도의 오차 범위에서 월면 영상분석을 통해 에어로솔 광학두께의 추정이 가능함을 알 수 있었다. 단, 대기 중의 에어로솔 입자들의 크기를 나타내는 모수인 앙스트롬지수(${\AA}$ngstr$\ddot{o}$m Exponent)는 파장별 광학두께의 작은 오차에도 큰 오차를 가질 수 있기 때문에 에어로솔 광학두께의 오차에 비해 비교적 큰 오차를 보일 수 있음이 나타났다. 그럼에도 불구하고, 야간의 에어로솔 광학두께 자료가 많지 않은 현실에서 저비용으로 월면 관측을 통하여 에어로솔 광학두께를 산출할 수 있는 가능성을 찾았다는 점에서 본 연구의 의의가 있으며 앞으로 보다 많은 관측과 분석을 통해 보다 향상된 야간 에어로솔 광학두께 추정이 가능할 것으로 보인다.
본 연구는 과거성공이 성과에 미치는 긍정적 영향과정에서 자아효능감이 매개역할을 하는지를 파악하고 자아효능감이 소진을 감소시키고 몰입을 증가시킴으로써 성과에 매개적 영향을 미치는지를 확인하려고 하였다. 이론적 연구들을 토대로 매개역할에 대한 가설을 세우고 438명의 학생들을 상대로 설문지와 성적을 근거로 얻어진 자료를 토대로 독립변수와 종속변수간의 이론적인 구조방정식의 제안모형을 만들어 대안모형과 비교함으로써 가설을 검증하였다. 본 연구를 위해 구조방정식 이외에도 Sobel test와 경로계수 비교를 위한 Equality test, 쌍대모수비교법 등이 동원되었다. 그 결과 자아효능감이 과거성공과 소진/몰입 사이에서 매개역할을 한다는 사실과 동시에 자아효능감도 성과에 직접적 영향뿐만 아니라 소진과 몰입을 통한 경로를 거친다는 사실도 입증되었다. 특히 자아효능감은 소진의 감소보다는 몰입의 증가라는 긍정적 측면의 역할이 더 강하다는 것도 입증하였다. 동시에 본 연구결과는 그간 부분적으로 연구되어 온 변수간의 상호관계를 하나의 연결모델로 도출했다는 점과 직무요구-자원(JD-R)모형과 자원보존(COR)모형에서 직무자원의 종업원 well-being에 대한 영향 중 부정적 소진의 감소보다 긍정적 몰입의 증가에 의한 영향이 더 크다는 긍정심리학의 주장을 재 입증하는데 공헌하였다.
교통안전연구에서 한 지점 (또는 구간)의 기대교통사고건수를 신뢰성 높게 추정하는 것은 매우 중요하다. 기대교통사고건수를 추정하기 위해 현재 국내에서는 주로 관측교통사고건수를 사용하고 있으나 국외에서는 포아송-감마 혼합모형에 기반한 경험적 베이즈 추정치를 활용하고 있는 추세이다. 그간 많은 연구들이 경험적 베이즈 추정치를 이용해 기대교통사고건수 추정 및 교통안전개선사업의 평가를 시도 하였으나 전술한 2가지 추정방법의 추정오차를 비교연구한 문헌은 없는 실정인 바 본 연구는 2가지 추정방법의 추정오차를 모의실험을 통해 비교 분석하여 제시하였다. 모의 발생된 총 3,000,000개 지점의 교통사고 자료를 분석한 결과 기대교통사고건수를 경험적 베이즈 추정방법을 이용해 추정했을 경우 그 추정오차는 관측교통 사고건수만을 이용했을 때 발생하는 추정오차에 비해 항상 작은 것으로 나타나 국내의 교통안전연구 가이드라인에 경험적 베이지안 추정방법의 도입이 필요할 것으로 판단된다. 그러나 사전분포의 불확실성이 높아질수록 두 가지 추정방법의 추정오차의 차이는 감소하는 것으로 나타나, 기대교통사고건수 추정 시 추정된 음이항 모형에 대한 종합적인 검증을 수행한 후 신뢰성 있는 초모수의 추정치를 이용해 경험적 베이지안 방법을 적용하는 것이 바람직하다고 판단된다.
주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.