• Title/Summary/Keyword: 불연속함수

Search Result 130, Processing Time 0.021 seconds

Nonparametric Detection of a Discontinuity Point in the Variance Function with the Second Moment Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.591-601
    • /
    • 2005
  • In this paper we consider detection of a discontinuity point in the variance function. When the mean function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better estimate the location of the discontinuity point with the mean function rather than the variance function. On the other hand, the variance function only has a discontinuity point. The target function in order to estimate the location can be used the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. We propose a nonparametric detection method of the discontinuity point with the second moment function. We give the asymptotic results of these estimators. Computer simulation demonstrates the improved performance of the method over the existing ones.

  • PDF

Nonparametric estimation of the discontinuous variance function using adjusted residuals (잔차 수정을 이용한 불연속 분산함수의 비모수적 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • In usual, the discontinuous variance function was estimated nonparametrically using a kernel type estimator with data sets split by an estimated location of the change point. Kang et al. (2000) proposed the Gasser-$M{\ddot{u}}ller$ type kernel estimator of the discontinuous regression function using the adjusted observations of response variable by the estimated jump size of the change point in $M{\ddot{u}}ller$ (1992). The adjusted observations might be a random sample coming from a continuous regression function. In this paper, we estimate the variance function using the Nadaraya-Watson kernel type estimator using the adjusted squared residuals by the estimated location of the change point in the discontinuous variance function like Kang et al. (2000) did. The rate of convergence of integrated squared error of the proposed variance estimator is derived and numerical work demonstrates the improved performance of the method over the exist one with simulated examples.

Discontinuous log-variance function estimation with log-residuals adjusted by an estimator of jump size (점프크기추정량에 의한 수정된 로그잔차를 이용한 불연속 로그분산함수의 추정)

  • Hong, Hyeseon;Huh, Jib
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.259-269
    • /
    • 2017
  • Due to the nonnegativity of variance, most of nonparametric estimations of discontinuous variance function have used the Nadaraya-Watson estimation with residuals. By the modification of Chen et al. (2009) and Yu and Jones (2004), Huh (2014, 2016a) proposed the estimators of the log-variance function instead of the variance function using the local linear estimator which has no boundary effect. Huh (2016b) estimated the variance function using the adjusted squared residuals by the estimated jump size in the discontinuous variance function. In this paper, we propose an estimator of the discontinuous log-variance function using the local linear estimator with the adjusted log-squared residuals by the estimated jump size of log-variance function like Huh (2016b). The numerical work demonstrates the performance of the proposed method with simulated and real examples.

Comparison study on kernel type estimators of discontinuous log-variance (불연속 로그분산함수의 커널추정량들의 비교 연구)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.87-95
    • /
    • 2014
  • In the regression model, Kang and Huh (2006) studied the estimation of the discontinuous variance function using the Nadaraya-Watson estimator with the squared residuals. The local linear estimator of the log-variance function, which may have the whole real number, was proposed by Huh (2013) based on the kernel weighted local-likelihood of the ${\chi}^2$-distribution. Chen et al. (2009) estimated the continuous variance function using the local linear fit with the log-squared residuals. In this paper, the estimator of the discontinuous log-variance function itself or its derivative using Chen et al. (2009)'s estimator. Numerical works investigate the performances of the estimators with simulated examples.

Extended MLS Difference Method for Potential Problem with Weak and Strong Discontinuities (복합 불연속면을 갖는 포텐셜 문제 해석을 위한 확장된 MLS 차분법)

  • Yoon, Young-Cheol;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.577-588
    • /
    • 2011
  • This paper provides a novel extended Moving Least Squares(MLS) difference method for the potential problem with weak and strong discontinuities. The conventional MLS difference method is enhanced with jump functions such as step function, wedge function and scissors function to model discontinuities in the solution and the derivative fields. When discretizing the governing equations, additional unknowns are not yielded because the jump functions are decided from the known interface condition. The Poisson type PDE's are discretized by the difference equations constructed on nodes. The system of equations built up by assembling the difference equations are directly solved, which is very efficient. Numerical examples show the excellence of the proposed numerical method. The method is expected to be applied to various discontinuity related problems such as crack problem, moving boundary problem and interaction problems.

Design of Tapered Line with Improved Chebyshev Function Removed Discontinuities (Chebyshev 함수에 의한 테이퍼형 선로의 설계에서 임피던스 불연속 제거에 관한 연구)

  • 이종빈;이상호;김상태;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • When the Chebyshev function is applied to design the waveguide transition, it exhibits poor impedance matching characteristics due to impedance discontinuities at the ends of tapered line. In this paper, an improved Chebyshev function, which is obtained by using the convolution property, is proposed to make improvements on the impedance matching characteristics of the waveguide transition. When rectangular to circular waveguide transition is designed by improved function, then the computed return loss is approximately 5 dB better than the conventional Chebyshev function.

  • PDF

Analysis on Definitions of Continuity Conveyed by School Mathematics and Academic Mathematics (학교수학과 학문수학에서의 연속성 개념 정의의 분석)

  • Kim, Jin Hwan;Park, Kyo Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.375-389
    • /
    • 2017
  • The purpose of this study is to analyze the difference and inter-connectivity between the definition of continuity in school mathematics and the definition of academic mathematics in four perspectives. These difference and inter-connectivity have not analyzed in previous papers. According to this study, the definition of 'continuity and discontinuity at one point' in school mathematics depends on the limit processing but in academic mathematics it depends on the topology of the domain. The target function of the continuous function in school mathematics is a function whose domain is limited to an interval or a union of intervals, but the target function of the continuous function in academic mathematics is all functions. Based on these results, the following two opinions are given in relation to the concept of continuity in school mathematics. First, since the notion of local continuity in school mathematics is based on limit processing, the contents of 2009-revised textbooks that deal with discontinuity at special point not belonging to the domain is appropriate. Here the discontinuity appears as types of infinite discontinuity, removable discontinuity, and step discontinuity. Second, the definition of a general continuous function is proposed to "if there is no discontinuity point in the domain of a function y = f(x), we call the function f a continuous function." This definition allows the discontinuity at special point in non-domain, but is consistent with the definition in academic mathematics.

An Improved Mesh-free Crack Analysis Technique Using a Singular Basis Function (특이기저함수를 이용하여 개선한 Mesh-free 균열해석기법)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.381-390
    • /
    • 2001
  • In this paper, a new improved crack analysis technique by Element-Free Galerkin(EFG) method is proposed, in which the singularity and the discontinuity of the crack successfully described by adding enrichment terms containing a singular basis function to the standard EFG approximation and a discontinuity function implemented in constructing the shape function across the crack surface. The standard EFG method requires considerable addition of nodes or modification of the model. In addition, the proposed method significantly decreases the size of system of equation compared to the previous enriched EFG method by using localized enrichment region near the crack tip. Numerical example show the improvement and th effectiveness of the previous method.

  • PDF

Testing the Existence of a Discontinuity Point in the Variance Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.707-716
    • /
    • 2006
  • When the regression function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better propose a test for the existence of a discontinuity point with the regression function rather than the variance function. In this paper we consider that the variance function only has a discontinuity point. We propose a nonparametric test for the existence of a discontinuity point with the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. The proposed method is based on the asymptotic distribution of the estimated jump size.

  • PDF

Analysis of Coplanar Waveguide Discontinuities Using Accurate Closed-Form Green's function (정확한 Closed-Form 그린함수를 이용한 코플래너 도파로 불연속 해석)

  • Kang, Yeon-Duk;Song, Sung-Chan;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.180-190
    • /
    • 2003
  • By using accurate closed-form Green's functions obtained from real-axis integration method, the full-wave analysis of CPW discontinuities are performed in space domain. In solving MPIE(Mixed Potential Integral Equation), Galerkin's scheme is employed with the linear basis functions on the triangular elements in air-dielectric boundary. In the singular integral arising when the observation point and source point coincides, the surface integral is transformed into the line integral and the integral is evaluated by regular integration. By using the Green's function from the real-axis integration method, the discontinuities are characterized accurately.

  • PDF