• Title/Summary/Keyword: 불연속면 조사

Search Result 137, Processing Time 0.024 seconds

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

Analysis of Characteristics using Geotechnical Investigation on the Slow-moving Landslides in the Pohang-si Area (포항지역 땅밀림지의 지반조사를 통한 땅밀림 특성 분석)

  • Lee, Moon-Se;Park, Jae-Hyeon;Park, Yunseong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • The aim of this study was to provide basic data that could identify and help prevent a slow-moving landslide using an analysis of the relationship between below-ground characteristics and water from three slow-moving landslide areas in Pohang, Gyeongsangbuk-do, South Korea. Surface surveys, resistivity, seismic exploration, well logging, and boring surveys were conducted in the three areas. The main direction of discontinuous surface was matched with the slope direction of the three landslides. The results indicatedthat slow-moving landslides might occur in the direction of the slope. Underground water was distributed within the crush zones within the three landslide areas and flowed along the tensile cracks. There was a significant difference (p<0.01) between the mean angle of the tensile cracks and that of the underground waterflow (p=0.8019). These results indicated that the progress of a slow-moving landslide can be forecast by monitoring the location and flow of underground water within a known slow-moving landslide area.

Slope Stability Analysis and Suggestion of Stabilization Methods on Failed Cut-Slopes Interbedded with Weakness Layer (연약층이 협재된 절개면의 안정성 해석 및 대책)

  • 구호본;이대영;김학준
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.157-170
    • /
    • 2003
  • This study is performed to investigate the cause of slope failure and to suggest suitable stabilization methods for the failed rock slopes. The slope which is located along the national highway between Maesan and Kakok in Dangjin-gun failed during the construction of roads. Site investigation, drilling program, field measurements, rainfall records, and stability analyses are used to investigate the cause of the slope failure. The problem determining the cut-slope angle based on the existing design manual for the construction of roads is reviewed based on the case history given in this paper. If weakness layer and geological structures such as folds and faults are developed in a slope, slope failure is possible even though the direction of slope and the direction of discontinuities depart more than $30^{\circ}$.

Case Study of Derivation of Input-Parameters for Ground-Structure Stability on Foliation-Parallel Faults in Folded Metamorphic Rocks (단층 발달 습곡지반 상 구조물 안정성을 위한 설계정수 도출 사례 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.467-472
    • /
    • 2020
  • Methods for deriving design input-parameters to ensure the stability of a structure on a common ground are generally well known. Folded metamorphic rocks, such as the study area, are highly foliated and have small faults parallel to the foliation, resulting in special research methods and tests to derive design input parameters, Etc. are required. The metamorphic rock ground with foliation development of several mm intervals has a direct shear test on the foliation surface, the strike/dip mapping of the foliation, the boring investigation to determine the continuity of the foliation, and the rock mass rating of the metamorphic rock. etc. are required. In the case of a large number of small foliation-parallel faults developed along a specific foliation plane, it is essential to analyze the lineament, surface geologic mapping for fault tracing, and direct shear test. Folded ground requires additional geological-structural-domain analysis, discontinuity analysis of stereonet, electrical resistivity exploration along the fold axis, and so on.

A Study on the Stability Analysis and Countermeasure of Tunnel Portal Failure Slope - in Suanbo Hot Springs 1 and 2 Tunnel Failure Site (터널 갱구부 붕괴 사면의 안정성 해석 및 보강공법에 관한 연구 - 수안보 온천 1, 2터널 붕괴 현장을 중심으로)

  • Baek, Yong;Koo, Ho-Bon;Yoo, Ki-Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.367-378
    • /
    • 2002
  • Recently, the number of tunnels on national roads has been increased due to the trend that construction of the large-scaled cut slopes is limited because of the environmental issues. Therefore, the slope failures of tunnel portal have often occurred. The tunnel portal in use has limitations on selection of the countermeasure and construction against slope failure. In the cases of Suanbo hot springs 1 and 2 tunnel portals, seedding was chosen and constructed as the countermeasureof slope failure when the tunnel was first built but collapsed in April, 2002. In this study, the failure sites were examined accurately through the site investigation and an efficient countermeasure according to stability analysis is presented. It is shown that it is very efficient to use resloping for Suanbo hot springs 1 tunnel and concrete buttress, rock anchor to reinforcement countermeasure, and attached rockfall prevention net by dividing the site into 3 sections for Suanbo hot springs 2 tunnel.

Effect of the Yeongcheon Dam Waterway Tunnel, Korea, on Local Groundwater Levels (영천댐 도수터널 주변지역 지하수위 영향 분석)

  • Gyu-Han Kim;Seong-Woo Moon;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.461-474
    • /
    • 2023
  • The study area is located in Hyeonseo-myeon and Andeok-myeon of Cheongsong-gun, Korea around the Yeongcheon dam waterway tunnel, and in this paper, it is analyzed whether the groundwater level is recovered or not compared to groundwater level before waterway tunnel construction by measuring the groundwater level of 156 wells which were installed in areas near and away from the waterway tunnel. From September 2017 to August 2018, the groundwater level of the well was measured at least once a month, and as a result of groundwater level observation survey, the groundwater level of wells distributed in the directly affected zone by the waterway tunnel is relatively lower than that of the indirectly affected zone apart from the waterway tunnel. These results are estimated to be predominantly affected by the effect of waterway tunnel acting on geologic discontinuities rather than by terrain conditions, i.e. groundwater flows being leaked to the waterway tunnel through direct or indirect channels. Continuous monitoring and further investigation will be required to maintain groundwater facilities and preserve groundwater environments in the future.

Geotechnical treatment for the fault and shattered zones under core foundation of fill dam (단층 및 파쇄대가 분포하는 Fill Dam 기초의 보강대책)

  • 김연중;최명달
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.19-35
    • /
    • 1992
  • aThe elastic properties of the fault zone (width; 3~12m), the shattered zone (width; over 40m) and the fresh rock zone distributed under the core foundation of fill dam in granitic gneiss have widely different range. The deformation moduli of the fresh rock zone, the fault zone and the shattered zone obtained from in situ rock tests - Plate Load Test and Bore Hole Deformation Test - show a range of $42,000~168,000kg/\textrm{cm}^2,{\;}963~2,204kg/\textrm{cm}^2{\;}and{\;}1,238~2,098kg/\textrm{cm}^2$, respectively. The differential settlements hetween the fault zone and the fresh rock zone are expected after the dam construction. Therefore, the displacement of foundation and concrete fill are evaluated using FEADAM 84 program of finite element analysis. The geometric distribution of discontinuifies obtained from the site mapping and drilling is considered in the finite element analysis. The analysis shows that the differential settlements between the fault zone and the fresh rock zone is about 6cm, while that of concrete fill is within 0.5cm.

  • PDF

Short Term variability of the Phytoplankton Populations in Masan Bay: I. Dynamics (마산만 식물플랑크톤의 단기적 변화양상 : 1. 동태)

  • PAE, SE JIN;YOO, SIN JAE
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.67-76
    • /
    • 1991
  • Masan Bay is infamous for its severe eutrophication, exemplified by frequent red tide incidences and anoxic conditions. We carried out daily observations for 16 days at one site immediately after the summer rainy season in 1988 on the basis that shorter observation intervals be necessary to observe a process with high turnover rate. in spite of the relatively short survey period, we could observe dramatic changes in abundance and composition of the phytoplankton populations. Cell densities and chlorophyll concentrations changed in the magnitude of 70 and 10 times, respectively, Skeletonema costatum, a diatom species, dominated the first peak of phytoplankton biomass and was followed by Prorocentrum minimum, a dinoflagellate species, which occurred dominantly in the second peak after about a week, form the viewpoint of time scale, we suggest that at least a weekly sampling might be appropriate in complex coastal environments as Masan Bay. While stratification enabled high production in the surface layer, it hindered the transport of silicate from bottom to the surface, which in turn limited the prolonged growth of diatoms. Ensued second peaks of silicate and diatom abundance in the surface layer suggest periodic flux of silicate from bottom across the discontinuity driven by tidal currents.

  • PDF

Stability Assessment on the Final Pit Slope in S Limestone Mine (S 석회석광산에서의 최종 잔벽사면의 안정성 평가)

  • Sun, Woo-Choon;Lee, Yun-Su;Kim, Hyun-Woo;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • The slopes of open-pit mine are typically designed without considering the reinforcement and support method due to the economical efficiency. However, the long-term stability of final pit slope is needed in some case, therefore the appropriate measures that can improve the stability are required. In this study, the field survey and laboratory test were carried out in S limestone mine. The stability assessment of final pit slope was performed through the stereographic projection method, SMR, and numerical analysis. And countermeasures for stabilization were proposed. The results of analysis show that full scale of slope failure is not expected but the failures of bench slope scale are likely to occur. In oder to increase the stability of bench slope, we suggested the remedial methods as follows: excavating the final pit slope by pre-splitting blasting, placing the wide berm in the intermediate bench slope and installing the horizontal drainage hole in the place of local ground water runoff.

Determination of Deformation Modulus of Rock Mass with Measured Tunnel Displacement (측정된 터널변위에 의한 암반 변형계수의 결정)

  • Park, Jae-Woo;Park, Eun-Gyu;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.655-664
    • /
    • 2007
  • The major geotechnical parameters employed in tunnel design are deformation modulus, Poisson's ratio, friction angle, cohesion, etc. Among these parameters, the deformation modulus is the most significant parameter in tunnel deformation. However, determination of the modulus for rock mass by means of tests is very difficult due to factors affecting including discontinuities and sample size, etc. Thus input values used in the numerical analysis are generally determined by empirical method. A numerical analysis on tunnel was conducted with geotechnical parameters determined through the geological field mapping, laboratory tests, and evaluation of boring data, and some discrepancy between the computed result and tunnel displacements measured was found. Thus, further analyses by changing the deformation modulus of rock mass were performed to determine a relationship between the modulus and computed displacement. Data from two tunnel sites were used to verify the applicability of the proposed method and a correlative equation between deformation modulus and tunnel displacement is proposed. The deformation modulus of rock mass was around 30-40% of young's modulus of intact rock in these cases.