DOI QR코드

DOI QR Code

Stability Assessment on the Final Pit Slope in S Limestone Mine

S 석회석광산에서의 최종 잔벽사면의 안정성 평가

  • 선우춘 (한국지질자원연구원 지구환경연구본부) ;
  • 이윤수 (경북대학교 지질학과 대학원) ;
  • 김현우 (한국지질자원연구원 지구환경연구본부) ;
  • 이병주 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.03.08
  • Accepted : 2013.04.01
  • Published : 2013.04.30

Abstract

The slopes of open-pit mine are typically designed without considering the reinforcement and support method due to the economical efficiency. However, the long-term stability of final pit slope is needed in some case, therefore the appropriate measures that can improve the stability are required. In this study, the field survey and laboratory test were carried out in S limestone mine. The stability assessment of final pit slope was performed through the stereographic projection method, SMR, and numerical analysis. And countermeasures for stabilization were proposed. The results of analysis show that full scale of slope failure is not expected but the failures of bench slope scale are likely to occur. In oder to increase the stability of bench slope, we suggested the remedial methods as follows: excavating the final pit slope by pre-splitting blasting, placing the wide berm in the intermediate bench slope and installing the horizontal drainage hole in the place of local ground water runoff.

노천광산사면은 일반적으로 경제성 문제로 지보대책을 고려하지 않고 설계된다. 그러나 최종 잔벽사면은 장기적인 안정성이 필요하므로 경우에 따라서는 안정성을 높일 수 있는 적절한 대책이 필요하다. 본 연구를 위해 S 석회석 광산의 지질 및 불연속면 조사, 암반평가, 강도시험 등 현장조사를 수행하였다. 그리고 최종 잔벽사면에 대해 평사투영, SMR, 수치해석을 통한 안정성 평가를 실시하고, 최종 잔벽사면의 처리방안을 제안하였다. 해석결과, 사면 전체규모에서 파괴는 예상되지 않지만, 벤치규모의 사면파괴는 발생할 가능성이 있다. 최종 잔벽사면은 프리스플리팅 발파로 정리하고, 중간 소단에 폭이 넓은 berm을 설치하거나 국부적으로 지하수 유출이 있는 곳에는 수평배수공 등을 시공하여 벤치사면의 안정성을 높일 수 있을 것이다.

Keywords

References

  1. 정용복, 선우춘, 이종범, 임동규, 2007, 노천석탄광산내 대규모 암반사면 안정성 해석, 2007 한국암반공학회 특별심포지움, 409-418.
  2. 한국광물자원공사, 2009, 쌍용동해(석회석)광산 시추결과 보고서.
  3. Barton, N., Lien, R. and Lunde, J., 1974, "Engineering Classifications of Rock Masses for the Design of Tunnel Support", Rock Mech., 6, 189-236. https://doi.org/10.1007/BF01239496
  4. Bieniawski, Z.T., 1976, "Rock Mass Classification of Jointed Rock Masses", Exploration for Rock Engineering, Johannesburg, 97-106.
  5. Bieniawski, Z.T., 1989, Engineering Rock Mass Classifications, John Wiley & Sons., 251.
  6. Dawson, E.M., Roth W.H. and Drescher, A., 1999, Slope stability analysis by strength reduction, Geotechnique, 49, 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  7. Gedney, D. and Weber, W., 1978, Design and construction of soil slopes, TRB specical report 176, 172-191.
  8. Hansen, J.B., 1967, The philosophy of foundation design: design criteria, safety factors and settlement limits, Proceedings of the symposium on bearing capacity and settlement of foundations, Duke University, Durham, North Carolina, 9-13.
  9. Hoek, E. and Brown, B.T., 1997, Practical Estimates of Rock Mass Strength, Int. J. Rock Mech. Min. Sci. 34, 8, 1165-I186. https://doi.org/10.1016/S1365-1609(97)80069-X
  10. Hoek, E., Kaiser P.K. and Bawden, W.F., 1995, Support of underground excavations in hard rock, Balkema, Rotterdam, 215.
  11. Hoek, E., Marinos, P. and Benissi, M., 1998, Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses-The case of Athens Schist Formation, Bull Eng Geol Env., 57, 151-160. https://doi.org/10.1007/s100640050031
  12. Hoek, E. and Diederichs, M.S., 2006, Empirical estimation of rock mass modulus, International Journal of Rock Mechanics & Mining Sciences, 43, 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  13. Hoek, E., 2007, Practical rock engineering, Roscience, Toronto, 17.
  14. Lee, Sang-eun and Jang, Yoon-ho, 2010, Stability Assesment of the Slope at the Disposal Site of Waste Rock in Limestone Mine, Journal of Korean Society for Rock Mechanics, 20, 6, 475-490.
  15. Meyerhof, G.G., 1970, Safety factors in soil mechanics, Canadian Geotechnical Journal, 7, 4, 349-355. https://doi.org/10.1139/t70-047
  16. NAVFAC, 1971, Design manual: soil mechanics, foundations, and earth structures, NAVFAC, DM-7, Department of the Navy, Naval Facilities Engineering Command, Alexandria, VA.
  17. Nicholson, G. and Bieniawski, Z.T., 1990, A non-linear deformation modulus based on rock mass classification. International Journal of Mining & Geological Engineering, 8, 181-202. https://doi.org/10.1007/BF01554041
  18. Priest, S.D. and Brown, E.T., 1983, Probabilistic stability analysis of variable rock slopes, Transactions of Institution of Mining and Metaluurgy, Section A: Mining Industry, 92, A1-12.
  19. Read, J. and Stacey, P., 2009, Guidelines for open pit slope design, Netherlands, CRC Press/Balkema, 224.
  20. Romana, R.M., 1985, New adjustment ratings for application of Bieniawski classification to slopes, Proc. Int. Symp. on the role of rock mechanics, Zactecas, 49-53.
  21. Romana, R.M., 1988, Practice of SMR classification for slope appraisal, Proc. Int. Symp. on Landslides, Lausanne, Balkema, Rotterdam, 1227-1229.
  22. SAICE, 1989, Code of practice: lateral support in surface excavations, South African Institution of Civil Engineers, Geotechnical Division.
  23. Sowers, G.F., 1979, Introductory soil mechanics and foundations, geotechnical engineering, Macmillan, New York.
  24. Sunwoo, Choon, Choi, Yo-Soon, Park, Hyeong-Dong and Jung, Yong-Bok, 2007, Drainage Control and Prediction of Slope Stability by GIS-based Hydrological Modeling at the Large Scale Open Pit Mine, Journal of Korean Society for Rock Mechanics, 17, 5, 360-371.