This paper reports an analysis of 19 Chinese and Korean middles school mathematics teachers' understanding of division by fractions. The study analyzes the teachers' responses to the teaching task of generating a real-world situation representing the meaning of division by fractions. The findings of this study suggests that the teachers' conceptual models of division are dominated by the partitive model of division with whole numbers as equal sharing. The dominance of partitive model of division constraints the teachers' ability to generate real-world representations of the meaning of division by fractions, such that they are able to teach only the rule-based algorithm (invert-and-multiply) for handling division by fractions.
This dissertation is aimed to investigate the reason why a contextualization is needed to help the meaningful teaching-learning concerning multiplications and divisions of fractions, the way to make the contextualization possible, and the methods which enable us to use it effectively. For this reason, this study intends to examine the differences of situations multiplying or dividing of fractions comparing to that of natural numbers, to recognize the changes in units by contextualization of multiplication of fractions, the context is set which helps to understand the role of operator that is a multiplier. As for the contextualization of division of fractions, the measurement division would have the left quantity if the quotient is discrete quantity, while the quotient of the measurement division should be presented as fractions if it is continuous quantity. The context of partitive division is connected with partitive division of natural number and 3 effective learning steps of formalization from division of natural number to division of fraction are presented. This research is expected to help teachers and students to acquire meaningful algorithm in the process of teaching and learning.
In this study, I compared and analyzed the contents of Korean, Japanese, Singapore, American, and Finnish textbooks about fraction which is one of the important and difficult concepts in elementary school mathematics. This is aimed to get the implications for meaningful fractional teaching and learning by analyzing the advantages and disadvantages of the methods and time of introducing the concept because fraction has the diversity of the sub-concepts and the introducing methods or process. As a result of the analysis, the fraction was introduced as part-whole(area) in all five countries' textbooks, but the use of number line, conversion between improper fraction and mixed number, whether to deal with part-whole(set) model. Furthermore, there are differences in the methods in obtaining of the equivalent fraction and the order of arrangement in comparison of fraction. Through this analysis, we discussed the reconsideration of the introducing contexts of fractions, the use of number line when introducing fractions, and the problem of segmentation and classification of contents.
In our present elementary mathematics curriculum, natural numbers are taught by using the a method of one-to-one correspondence or counting operation which are not related to measurement, and fractional numbers are taught by using a method which is partially related to measurement. The most serious limitation of these teaching methods is that natural numbers and fractional numbers are separated. To overcome this limitation, Dewey and Davydov insisted that the natural number and the fractional number should be taught by measurement of quantity. In this article, we suggested a method of teaching the natural number and the fractional number by measurement of quantity based on the claims of Dewey and Davydov, and compare it with our current method. In conclusion, we drew some educational implications of teaching the natural number and the fractional number by measurement of quantity as follows. First, the concepts of the natural number and the fractional number evolve from measurement of quantity. Second, the process of transition from the natural number to the fractional number became to continuous. Third, the natural number, the fractional number, and their lower categories are closely related.
Because of the various concepts and meanings of fractions and the difficulty of learning, studies to improve the teaching methods of fraction have been carried out. Particularly, because there are various methods of teaching depending on the type of fractions or the models or methods used for problem solving in fraction operations, many researches have been implemented. In this study, I analyzed the fractional operations of CCSSM-CA and its U.S. textbooks. It was CCSSM-CA revised and presented in California and the textbooks of Houghton Mifflin Harcourt Publishing Co., which reflect the content and direction of CCSSM-CA. As a result of the analysis, although the grades presented in CCSSM-CA and Korean textbooks were consistent in the addition and subtraction of fractions, there are the features of expressing fractions by the sum of fractions with the same denominator or unit fraction and the evaluation of the appropriateness of the answer. In the multiplication and division of fractions, there is a difference in the presentation according to the grades. There are the features of the comparison the results of products based on the number of factor, presenting the division including the unit fractions at first, and suggesting the solving of division problems using various ways.
Chu Hsi inherited the proposition of Cheng Yi, and it spent him over ten years to finish writing the works of Xi Ming Jie, thus, making the thought of "Li Yi Fen Shu" bethe explanatory model of Xi Ming, therefore, playing the role to determine the tone of Xi Ming. At first, the thought of "Li Yi Fen Shu is a concept to embody the ethical significance of Xi Ming. But in terms of all the discussion about "Li Yi Fen Shu" of Chu Hsi in his life, this proposition is not only for the ethical significance of Xi Ming, but also includes much more general philosophical significance, revealing the general and special relationship of things. The former is the narrow "Li Yi Fen Shu", but the latter is the generalized one. This article won't discuss the generalized one, and it will take the narrow one as the research object. In the past research in academic circles, some scholars thinks that the proposition of "Li Yi Fen Shu" accords with the aim of Xi Ming, some others don't think so. Contrary to both of the two views, this article thinks that there is some conformity and inconformity between the explanatory model of "Li Yi Fen Shu" of Chu Hsi and the aim of Xi Ming. In other words, Contributions and limitations coexist when Chu Hsi explains Xi Ming in the model of "Li Yi Fen Shu", and there is not only the development to the intention of Xi Ming, but alsothe far meaning away from the aim of Xi Ming.
Journal of Elementary Mathematics Education in Korea
/
v.16
no.2
/
pp.295-320
/
2012
The purpose of this study is searching students' cognitive structures before and after learning division of fraction. Also the researchers investigated how their structures are connected when they solve division of fraction problems through individual interviews. The researcher suggested the instruction of division of fraction from the results.
A goal of this study is figuring out how fraction learning centered on various representation activities influences the fraction comprehension and mathematical attitudes. The study focused on 33 4th-grade students of B elementary school in Seoul. In the study, 15 fraction learning classes comprising enactive, iconic, and symbolic representations took place over 6 weeks. After the classes, the ratio of the students who achieved relational understanding increased and the students averagely recorded 90 pt or more on the fraction comprehension test I, II and III. Two-dependent samples t-test was conducted to analyze a significant difference in mathematical attitudes between pre-test and post-test. On the test result, there was the meaningful difference with 0.01 level of significance. To conclude, the fraction learning centered on various representation activities improves students' relational understanding and fraction understanding. In addition, the fraction learning centered on various representation activities gives positive influences on mathematical attitudes since it increases learning orientation, self-control, interests, value cognition, and self-confidence of the students and decreases fears of the students.
The purpose of this study is to explore in detail $5^{th}$ grade students' understanding on the big ideas related to addition of fraction with different denominators: fixed whole unit, necessity of common measure, and recursive partitioning connected to algorithms. We conducted teaching experiments on 15 fifth grade students who had learned about addition of fractions with different denominators using the current textbook. Most students approached to the big ideas related to addition of fractions in a procedural way. However, some students were able to conceptually understand the interpretations and algorithms of fraction addition by quantitatively thinking about the context and focusing on the structures of units. Building on these results, this study is expected to suggest specific implications on instruction methods for addition of fractions with different denominators.
Mathematics teachers' content knowledge is an important asset for effective teaching. To enhance this asset, teacher's knowledge is required to be diagnosed and developed. In this study, we employed problem-posing and problem-solving tasks to diagnose preservice teachers' understanding of fraction multiplication. We recruited 41 elementary preservice teachers who were taking elementary mathematics methods courses in Korea and the United States and gave the tasks in their final exam. The collected data was analyzed in terms of interpreting, understanding, model, and representing of fraction multiplication. The results of the study show that preservice teachers tended to interpret (fraction)×(fraction) more correctly than (whole number)×(fraction). Especially, all US preservice teachers reversed the meanings of the fraction multiplier as well as the whole number multiplicand. In addition, preservice teachers frequently used 'part of part' for posing problems and solving posed problems for (fraction)×(fraction) problems. While preservice teachers preferred to a area model to solve (fraction)×(fraction) problems, many Korean preservice teachers selected a length model for (whole number)×(fraction). Lastly, preservice teachers showed their ability to make a conceptual connection between their models and the process of fraction multiplication. This study provided specific implications for preservice teacher education in relation to the meaning of fraction multiplication, visual representations, and the purposes of using representations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.