• Title/Summary/Keyword: 볼나사

Search Result 31, Processing Time 0.024 seconds

Thermal Analysis of Ballscrew Systems by Explicit Finite Difference Method (현시적 유한차분법을 이용한 볼나사 시스템의 열해석)

  • Min, Bog-Ki;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Friction generated from balls and grooves incurs temperature rise in the ballscrew system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ballscrew shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ballscrew. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

레이저를 이용한 볼나사 리드오차 측정에 관한 연구

  • 윤영식;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.254-259
    • /
    • 1994
  • Recently, the precision ball screw becomes the essence of the high-precision industries and is playing a key role in the positioning devices. The standard and definition of pitch error in a precision ball screw is specified by KS, JIS or ISO. However, the method of measuring the pitch error is not concrete. In this study. laser measurement system(LMS) with a laser position transducer and a machine-tools is developed. In order to verify the stability of the LMS, several experiments with the standard ball screw is performed.

  • PDF

A Study on Improvement of Repeatability induced Thermal deformation of the ball screw (볼나사 열변형에 따른 반복정밀도 개선에 관한 연구)

  • 조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.31-36
    • /
    • 1997
  • Thermal expansion of the ball screw in semi-closed loop type CNC Lathe directly affects the position precision along the travel axis. In this paper, the thermal displacement of the ball screw is estimated by using macro variables. The estimated displacements of the ball screw are managed by calculating the interval of pitch error rate in the NC. The thermal behaviour of the ball screw of the CNC Lathe, under the constant operating conditions, was measured to examine the effectiveness of this compensation method. The results showed that thermal displacement of the ball screw could be maintained its accuracy better than 6${\mu}{\textrm}{m}$ while applying this method.

  • PDF

A Study on Ball Screw Polishing Using Magnetic Assisted Polishing (자기연마법을 이용한 볼나사의 연마가공에 관한 연구)

  • 이용철;이응숙;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.43-47
    • /
    • 1995
  • The ball screw is one of the important mechanical parts for the linear motion feeding systems. The usage of the ball screw has been growing in various industrial fields such as CNC machine tool, industrial robot and automated systems. Because of ever increasing demand for ball screws, increased accuracy and quality of the ball screw is needed,especially the surface roughness of the ball contact area in order to diminish noise and vibration. Therefore to improve the surface roughness of the area,we introduced magnetic assisted polishing which is one of the new potential polishing methods. In this study, diamond slurry and iron powder was used for magnetic assisted polishing of the ball bearing surface. This polishing process was experimentally confirmed to improve the surface roughness of the ball bearing.

  • PDF

Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw (볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어)

  • 최형식;박용헌;정경식;이호식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

A Study on the Life of Ball Screws (볼나사의 수명에 관한 연구)

  • 김욱배;박철우;이상조;박충서
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.894-899
    • /
    • 1997
  • Genernally, the life of ball screws is presented in catalogue of domestic manufacturer by the name of dynamic load capacity. But, systematic experiment method and reliable data are not secured, even now. Data presented in catalogue is obtained at already established life expression of ball-bearing. Therefore studying on the life of ball screws, characteristic qualities of ball screw must be considered. We studied systematic experiment method and by this do experiments, obtained data. This paper present above items, and expression of life prediction by experiment results.

  • PDF

Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw (볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어)

  • 최형식;김영식;전대원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

Modeling of the Robot Leg Driven by the Ball Screw Actuator (볼나사 구동기를 갖는 로봇다리의 모델링)

  • 최형식;이호식;박용헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.583-586
    • /
    • 2000
  • The conventional actuators with the speed reducer had weakness in supporting the weight of the body and leg itself. To overcome this, a new four bar link mechanism actuated by the ball screw was proposed. The four bar mechanism has higher strength and gear ratio than the conventional actuator to actutate the leg of the biped robot. One leg was designed to have ankle, thigh, and hip joints. The kinematics and dynamics of one leg with four bar link mechanism was analyzed using Euler-Lagrange approach. The dynamics of one leg was expressed in the ball strew frame.

  • PDF

A Study on Structure of Support Ball Screw and Arrangement of Combined Bearing (볼나사 지지 구조와 베어링 조합 배열에 관한 연구)

  • 홍성오;정성택;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.51-56
    • /
    • 2002
  • In order to achieve high precision machine tools, Performance enhancement of feed drive systems is required. One of the important technical issues is how to decrease thermal expansion of ball screw in proportion to the increase of machining speed. When measuring force of stretch of ball screw, since not only actual expansion and the value of bending have to be considered, it is impossible to define the exact value of expansion. In addition, support bearings of ball screw gain considerable force in axial direction. It also generates thermal expansion on the ball screw, and deteriorates the performances of the hearings. In conclusion, it is impossible to give the pretension enough to absorb all the elongation due to thermal expansion generated during machine is running. If given bed column and saddle are all bent to chance machine accuracy, and the support bearings of ball screw is damaged.