• Title/Summary/Keyword: 보광재배

Search Result 35, Processing Time 0.036 seconds

Effect of Supplemental Lighting of Sub-Compensation Intensities on Growth of Rosa hybrida L. 'Vital' (광보상점 이하의 보광이 절화장미 'Vital'의 생육에 미치는 영향)

  • Choi, Young-Hah;Kwon, Joon-Kook;Choi, Gyeong-Lee;Kang, Nam-Jun;Chun, Hee;Cho, Myeong-Whan;Seo, Tae-Cheol;Roh, Mi-Young;Lee, Seong-Chun;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • This experiment was conducted to investigate the effect of supplemental lighting of low light intensities on growth and yield of rose 'Vital' in a forcing culture. Metal halide lamp (MH), High pressure sodium lamp (HSP), and MH+HSP were used as the light sources, and they were set up at a $310\;cm{\times}450\;cm$ interval and at 120cm above the culture beds. Light intensity at 1m point distance from supplemental lighting sources was $32{\sim}34\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Days to the 1st and 2nd harvests decreased by $5{\sim}8$ and $3{\sim}5$days, respectively in supplemental lighting treatment as compared to the control. Days to harvesting was the shortest in MH+HPS treatment, followed by BPS and MH, although there was no significant difference between HPS and MH treatments. The growth was better and incidence of blind shooting decreased by $5{\sim}7%$ in supplemental lighting treatments than the control, increasing marketable cut flowers. The incidence of blind shoot was the lowest in MH+BPS treatment, and there were no significant difference between MH and BPS treatments. In conclusion, supplemental lighting of low light intensities was effective in reducing days to flowering and reduced occurrence of blind shoots.

Effect of LEDs (Light Emitting Diodes) Irradiation on Growth of Paprika (Capsicum annuum 'Cupra') (LED 보광이 파프리카(Capsicum annuum 'Cupra') 생육에 미치는 영향)

  • An, Chul-Geon;Hwang, Yeon-Hyeon;An, Jae-Uk;Yoon, Hae-Suk;Chang, Young-Ho;Shon, Gil-Man;Hwang, Seung-Jae
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.253-257
    • /
    • 2011
  • This study was carried out to investigate the effect of different light emitting diode (LED) irradiation on the growth of paprika (Capsicum annuum 'Cupra'). The plants were irradiated by red (660 nm), blue (460 nm) and red + blue (4 : 1) light emitting diodes above 50 cm for 5 hours after sunset. Photosynthetic photon flux (PPF) irradiated by red, blue and red + blue LED were $79{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and $102{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ respectively. Leaf temperature of paprika grown under blue LED irradiation was the highest of $18.6^{\circ}C$. Fruit temperature was the highest under in the control (no irradiation) but it was lower than leaf temperature. There was influence of LED irradiation on the paprika plants height; under blue irradiation the plant height was the shortest, while under in the control plant height was the highest. The leaf size of under different LED irradiation was bigger than that of in the control. Mean fruit weight under different LED irradiation was significantly increased; however number of fruits and marketable yield per plant were significantly decreased as compared to the control.

Varying Effects of Artificial Light on Plant Functional Metabolites (인공광 이용에 따른 작물의 기능성 물질의 차별적 증가)

  • Kim, Yang Min;Sung, Jwa Kyung;Lee, Ye Jin;Lee, Deog Bae;Yoo, Chul Hyun;Lee, Seul Bi
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • BACKGROUND: Many studies on artificial lighting have been recently performed to investigate its effect on agricultural products with good quality. This review was aimed at comparing the effects of artificial light on functional metabolites of the plants that were grown in greenhouses and growth chamber. METHODS AND RESULTS: It has been summarized that artificial lighting both in growth chambers and greenhouses caused different functional metabolites patterns depending on light quality. Even though the same light quality was applied, different patterns in metabolites were observed in different plant species. For the same species, supplementation of the same light quality in both growth chambers and greenhouses did cause different functional metabolites patterns. CONCLUSION: Artificial lighting caused different patterns in functional metabolites of plants grown in greenhouses and growth chambers, depending on the light quality and/or plant species. The manipulation of plant growth and functional metabolites would be possible by engineering the light qualities, but knowledge on proper lighting condition depending on plant species and growth places would be necessary.

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses (황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교)

  • Park, Kyoung Sub;Kwon, Dae Young;Lee, Joon Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.

Effects of Supplemental LED Lighting on Productivity and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) Grown on the Bottom Bed of the Two-Bed Bench System (2단 베드 시스템의 하단부에서 자란 딸기의 생산성 및 과일 품질에 미치는 보광 LED의 효과)

  • Choi, Hyo Gil;Jeong, Ho Jeong;Choi, Gyeong Lee;Choi, Su Hyun;Chae, Soo Cheon;Ann, Seoung Won;Kang, Hee Kyoung;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • The aim of this study was to confirm that effects of supplemental LED illumination on a strawberry yield and fruit quality when strawberry grown on a bottom bed to be deficient ambient light due to shading of a upper bed during cultivation by a two-bed bench system. A strawberry was cultivated as a drip irrigation system in the two-bed bench system filled with a strawberry exclusive media from October 2015 to January 2016. The upper and the bottom bed without LED illumination for growth of a strawberry were using as a control. For LED light treatments, from 10 am to 4 pm, we illuminated LEDs as $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity by using blue, red, and mixing LED (blue plus red) on the strawberry plants of the bottom bed. In the yield of strawberry fruit, the strawberry grown on the bottom bed treated with the blue LED significantly increased compared with that of the bottom bed part control, and increased to by near 90% of the strawberry output of the upper bed part control. The soluble sugar content of strawberry fruit grown on the upper bed part control and on the bottom bed illuminated with blue or mixed LED was higher than that of red LED and the control of the bottom bed. The content of anthocyanin was the highest increased in the strawberry grown on the upper bed part control that received a lot of ambient light, however when comparing only the bottom bed, strawberry fruits grown on all LED treatments were higher than that of the control. Therefore, we considered that using of the blue LED light on the bottom bed of two-bed bench system during strawberry cultivation is advantageous for the increase of yield and improvement of fruit quality.

Effect of Reflective Film Mulching on the Stomatal Features, Transpiration Rate and Photosynthetic Rate of Tomato Plants in Greenhouse Cultivation (반사필름 멀칭이 토마토의 기공특성, 증산속도, 광합성속도에 미치는 영향)

  • 조일환;김완순;허노열;권영삼
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.292-298
    • /
    • 1997
  • These studies were conducted to verify the effect of the supplementary lighting by reflective film mulching and its establishment in the north side of greenhouse on the utility of light at tomato by means of investigating changes of leaf temperatures, stomatal features, transpiration rates and photosynthetic rates. Stomatal density of leaves were high in the reflective film mulching but sizes of stomata were not different. As the osmotic potential in rooting zone was low, the stomatal resistance was high, transpiration rate was low, and leaf temperature was increased by 40.62$^{\circ}C$. And also in the block of reflective film mulching photosynthetic rates were decreased hut chlorophyll contents were not different. Especially, there is an effect of controlling greenhouse whiteflies by treatment of reflective film mulching. It is thought that the reason of high quality or increasing yield at several crops by supplementary lighting, such as reflective film mulching, would be caused by influences of absorption and distribution of nutrients through high transpiration rate and photosynthesis which resulted from increase of stomata.

  • PDF

Effect of RED and FAR-RED LEDs on the Fruit Quality of 'Hongro'/M.26 Apple (적색과 초적색 LEDs 보광이 '홍로'/M.26 사과의 과실품질에 미치는 영향)

  • Kang, Seok-Beom;Song, Yang-Yik;Park, Moo-Yong;Kweon, Hun-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • BACKGROUND: As improved LEDs (Light Emitting Diode) industry and decreased the price of LEDs in Korea, some farmers try to using the RED LEDs in green house and open field to increase the production of crop under bad weather condition. The aim of this study is to find out the effect of RED and FAR-RED LEDs lighting on the fruit quality of twelve-year old 'Hongro'/M.26 apple during night after sunset. METHODS AND RESULTS: FAR-RED (730nm, 2 and 4 hour) and RED (620nm, 2 and 4 hour) with 20 LED/PCB were treated in orchard for 16 weeks from June 10 to October 10 in 2009 and 2010 with control as an comparison. In our experiments, leaf weight was significantly higher in RED LEDs than control, tended to be decreased as times of FAR-RED lighting increased. Fruit weight was increased more in RED LEDs than control in 2009 and 2010, but decreased in FAR-RED lighting compared to control in 2010. Firmness and Hunter's a value of fruit were increased in FAR-RED lighting with 2 and 4 h than control. Soluble solid contents were higher in 2 h RED and 2, 4 h FAR-RED LEDs compared to control in 2009, there was no significant difference in 2010. Acid contents were no difference among the treatments. CONCLUSION(S): In our results, we found that RED LEDs was more helpful to increase the fruit weight and FAR-RED LEDs promote to be higher hunter a value of fruit skin. So, we thought that it is necessary to more study if mixed of RED and FAR-RED lighting is more helpful to promote fruit quality of 'Hongro' apple than single lighting of RED or FAR-RED LEDs respectively.

Effect of Supplemental Lighting in Different Lighting Intensity on Pyruvic Acid and Sugar Content in Onion(Allium cepa L.) (양파재배 시 보광정도에 따른 pyruvic acid와 당 함량)

  • Lee, Eun-Ju;Jeon, Jae-Kyung;Suh, Jun-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.266-272
    • /
    • 2008
  • The aim of this study was to investigate the effect of supplemental lighting with different lighting intensity during growth on the sugar and pyruvic acid content of onion bulbs. As the result of comparison with growth, the content of pyruvic acid and sugar at harvest, supplemental lightening condition showed better growth, lower pyruvic acid content and higher sugar content than control. As to the growth at harvest according to lightening condition, 'Josaeng-ssundeobol' showed better growth as the lightening increased and 'Damrojunggab' had no difference above $12{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR. 'Josaeng-ssundeobol' contained much more content of pyruvic acid and sugar than 'Damrojunggab'. 'Josaeng-ssundeobol' had the lowest pyruvic acid content in $24{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR and 'Damrojunggab' had no difference above the $12{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR. The sugar content of 'Josaeng-ssundeobol' had no big difference above $18{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR and that of 'Damrojunggab' had no big difference above $12{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR. Desirable indicator to select individuals for the onion breeding is to select individuals that has low pyruvic acid content and high sweetness. Therefore, it will be possible to produce sweet onion conditioned on light supplement over $18{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR in 'Josaeng-ssundeobol' and over $12{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR in 'Damrojunggab'.

Effect of Supplementary or Heating Lamps on the Yield, Vase Life, and Leaf Color of Cut Rose (보광등과 난방등이 절화장미 수확량, 절화수명, 엽색에 미치는 영향)

  • Jeong, Kyeong Jin;Yun, Jae Gill;Chon, Young Shin;Shin, Hyun Suk;Lee, Sang Woo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.158-165
    • /
    • 2018
  • The effects of different kinds of supplementary lighting or heating lamps on the yield, cut flower life, and leaf color of cut rose were compared and analyzed. For this purpose, light emitting diode lamp (LED), metal halide lamps (MH), and high-pressure sodium lamps (HPS) as the supplementary lamps, and carbon fiber infrared lamp (NCFI) were installed on hydroponic cultivation bed in a cut rose farm. The yield of cut flower rose and the number of marketable flowers were greatly increased in spring and autumn by HPS treatment, but not in winter. The length of flower stalk was longer than that of control in the spring but decreased in winter. It seemed likely that the shorter flower stalk in winter was due to the shortened period of vegetative growth compared to the control because flowering was promoted by supplementary lighting. Vase life was not different among treatments in the autumn when the lighting time was short, but in winter, it was prolonged to 3 more days by only HPS, compared with the control. Leaf color was significantly affected by light treatment in winter rather than autumn. Leaf color was darkened in all supplementary lamps (LED, MH, HPS) treatment, whereas NCFI was similar to the control in leaf color. In conclusion, HPS is considered to be a very good supplementary lamp because it increases the length of flower stalk and the yield and prolongs vase life in cut roses. Even though NCFI could function as a heating lamp radiating a lot of heat, it was considered that the role as a supplementary light is unsatisfactory because the number of marketable flowers decreases and the quality index of cut rose deteriorates by NCFI.

Effects of Supplemental LEDs on the Fruit Quality of Two Strawberry (Fragaria × ananassa Duch.) Cultivars due to Ripening Level (LED 보광이 딸기 두 품종의 성숙도에 따른 과실 품질에 미치는 영향)

  • Choi, Hyo Gil;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.302-310
    • /
    • 2019
  • This study was conducted to investigate the effects of LEDs on the fruit qualities of two strawberry (Fragaria ${\times}$ ananassa Duch.) cultivars such as hardness, phytochemicals, and antioxidant activity using the strawberry fruits, which were harvested by 50% and 100% ripening levels of fruits grown under LEDs illuminated during 6 hours after sunset from November 2018 to January of the following year. In the hardness of strawberry fruit, when two strawberry cultivars were illuminated red LED light, in 50% ripening as well as 100% ripening fruit of both 'Daewang' and 'Seolhyang' cultivars were significantly higher compared to other treatments. Also, in the sugar content on 50% ripening fruit of two cultivars, the fruit of red LED light was significantly higher than in the other LEDs and control. On the other hand, in the acidity of 50% and 100% ripening levels of strawberry fruit, the fruit under control condition was higher in than that of LEDs. The phenolic compounds of strawberry fruit grown in control was much higher than that of strawberry treated with LEDs. However, the influence of LEDs on flavonoid and anthocyanin content of strawberry fruit did not affected. Changes in the phytochemicals contents of the strawberry tends to be affected depending on the maturity of fruit. Antioxidant activity such as DPPH and ABTS of were not different by maturity of fruit, and supplementation of LEDs during 6 hours at night. Therefore, we concluded that lighting of LEDs is effective for fruit quality in terms of sugar accumulation and fruit hardness.