DOI QR코드

DOI QR Code

Effects of Supplemental LEDs on the Fruit Quality of Two Strawberry (Fragaria × ananassa Duch.) Cultivars due to Ripening Level

LED 보광이 딸기 두 품종의 성숙도에 따른 과실 품질에 미치는 영향

  • 최효길 (공주대학교 원예학과) ;
  • 정호정 (국립원예특작과학원 시설원예연구소)
  • Received : 2019.07.12
  • Accepted : 2019.08.20
  • Published : 2019.10.30

Abstract

This study was conducted to investigate the effects of LEDs on the fruit qualities of two strawberry (Fragaria ${\times}$ ananassa Duch.) cultivars such as hardness, phytochemicals, and antioxidant activity using the strawberry fruits, which were harvested by 50% and 100% ripening levels of fruits grown under LEDs illuminated during 6 hours after sunset from November 2018 to January of the following year. In the hardness of strawberry fruit, when two strawberry cultivars were illuminated red LED light, in 50% ripening as well as 100% ripening fruit of both 'Daewang' and 'Seolhyang' cultivars were significantly higher compared to other treatments. Also, in the sugar content on 50% ripening fruit of two cultivars, the fruit of red LED light was significantly higher than in the other LEDs and control. On the other hand, in the acidity of 50% and 100% ripening levels of strawberry fruit, the fruit under control condition was higher in than that of LEDs. The phenolic compounds of strawberry fruit grown in control was much higher than that of strawberry treated with LEDs. However, the influence of LEDs on flavonoid and anthocyanin content of strawberry fruit did not affected. Changes in the phytochemicals contents of the strawberry tends to be affected depending on the maturity of fruit. Antioxidant activity such as DPPH and ABTS of were not different by maturity of fruit, and supplementation of LEDs during 6 hours at night. Therefore, we concluded that lighting of LEDs is effective for fruit quality in terms of sugar accumulation and fruit hardness.

본 연구는 딸기(Fragaria ${\times}$ ananassa Duch.) 두 품종인 대왕과 설향을 LED 조명으로 일몰 후부터 6시간 동안 2018년 11월부터 이듬해 1월까지 야간 보광 처리한 후, 각각 50%와 100% 착색되었을 때, 과실을 수확하여 딸기 과실의 경도, 식물화합물 및 항산화 활력을 측정하여 LED 광과 성숙도에 따른 과실 품질변화를 확인하고자 실시하였다. 딸기 과일의 경도에서는, 두 품종 모두 적색 LED를 보광했을 때, 50%뿐만 아니라 100% 익은 과실에서 유의하게 높았다. 당도 또한 50% 착색된 과실을 비교한 경우, 적색 LED 광이 품종 모두에서 다른 광처리 보다 유의하게 높게 나타났다. 반면에, 딸기의 산도에서는 LED 광 처리구보다는 대조구에서 50%뿐만 아니라 100% 착색된 과실에서도 높게 나타났다. 페놀화합물의 경우, LED 광을 처리한 딸기보다는 대조구 상태에서 생육한 딸기 과실의 함량이 월등히 높았다. 하지만 플라보노이드와 안토시아닌 함량에서는 LED 광의 영향은 미미하였다. 식물화합물의 경우는 LED 광보다는 익어가면서 성숙도에 따라 그 함량의 변화가 달라지는 경향이 크다. 또한, DPPH 및 ABTS 항산화능의 경우는 성숙도 및 LED 보광에 의한 차이는 없었다. 따라서 본 연구 결과로 미루어 보아, 과실의 당도와 유통 측면에서는, LED 보광이 충분히 과실 품질에 도움 될 것으로 사료된다.

Keywords

References

  1. Ahmed, A.E., and J.M. Labavitch. 1980. Cell wall metabolism in ripening fruit. 1. cell wall changes in the ripening 'Bartlett' pears. Plants Physiol. 65:1009-1013. https://doi.org/10.1104/pp.65.5.1009
  2. Amatori, S., L. Mazzoni, J.M. Alvarez-Suarez, F. Giampieri, M. Gasparini, T.Y. Forbes-Hernandez, S. Afrin, A.E, Provenzano, G. Persico, B. Mezzetti, A. Amici, M. Fanelli, and M. Battino. 2016. Polyphenol-rich strawberry extract(PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Scientific Reports 6:30917. https://doi.org/10.1038/srep30917
  3. An, C.G., Y.H. Hwang, J.U. An, H.S. Yoon, Y.H, Chang, G.M. Shon, and S.J. Hwang. 2011. Effect of LEDs (light emitting diodes) irradiation on growth of paprika (Capsicum annuum Cupra). J. Bio-Environment Control 20:253-257 (in Korean).
  4. Bae, J.H., S.O. Yu, Y.M. Kim, S.U. Chon, B.W. Kim, and B.G. Heo. 2009. Physiological activity of methanol extracts from ligularia fischeri and their hyperplasia inhibition activity of cancer cell. J. Bio-Environment Control 67:67-73 (in Korean).
  5. Cheng, G.W., and P.J. Breen. 1991. Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Amer. Soc. Hort. Sci. 116:865-869. https://doi.org/10.21273/JASHS.116.5.865
  6. Choi, H.G., J.K. Kwon, B.Y. Moon, N.J. Kang, K.S. Park, M.W. Cho, and Y.C. Kim. 2013. Effect of different light emitting diode (LED) lights on the growth characteristics and the phytochemical production of strawberry fruits during cultivation. Korean J. Horti. Sci. Technol. 31:56-64 (in Korean). https://doi.org/10.7235/hort.2013.12100
  7. Choi, H.G., B.Y. Moon, and N.J. Kang. 2015. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Scientia Horticulturae 189:22-31. https://doi.org/10.1016/j.scienta.2015.03.022
  8. Choi, H.G., H.J. Jong, G.L. Choi, S.H. Choi, S.C. Chae, S.W. Ann, H.K. Kang, and N.J. Kang. 2018. Effects of supplemental LED lighting on productivity and fruit quality of strawberry (Fragaria ananassa Duch.) grown on the bottom bed of the two-bed bench system. Protected Horticulture and Plant Factory 27:199-205 (in Korean). https://doi.org/10.12791/KSBEC.2018.27.3.199
  9. Cordenunsi, B.R., J.R. Oliveira do Nascimento, M.I. Genovese, and F.M. Lajolo. 2002. Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil. Jounal Agri. Food Chemi. 5:2581-2586.
  10. Gasparini, M., T.Y. Forbes-Hemandez, S. Afrin, P. Reboredo- Rodriguesz, D. Cianciosi, B. Mezzetti, J.L. Quiles, S. Bompadre, M. Battino, and F. Giampieri. 2017. Strawberry-based cosmetic formulations protect human dermal fibroblasts against UVA-induced damage. Nutrients 9:605. https://doi.org/10.3390/nu9060605
  11. Ge, C., Y. Luo, F. Mo. Y.H. Xiao, N.Y. Li, and H.R. Tang. 2019. Effects of glutathione on the pipening quality of strawberry fruits. AIP Confernce Proceedings Vol. 2079, 020013:1-5.
  12. Hidaka, K., K. Dan, H. Imanura, Y. Miyoshi, T. Tkayama, K. Sameshima, M. Kitano, and M. Okimura. 2013. Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environ. Control. Biol. 51:41-47. https://doi.org/10.2525/ecb.51.41
  13. Huang, J.Y., F. Xu, and W. Zhou. 2018. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit. J. Scil. Food. Agric. 98:5486-5493. https://doi.org/10.1002/jsfa.9093
  14. Ishikura, N., S. Hayashida, and K. Tazaki. 1984. Biosynthesis of galic and ellagic acids with 14C-labeled compounds in Acer and Rhus leaves. Bet. Msg. Toyo 97:355-367.
  15. Kang, S.B., Y.Y. Song, M.Y. Park, and H.J. Kweon. 2013. Effect of red and far-red LEDs on the fruit quality of 'Hongro'/M.26 apple. Korean J. Environ. Agic. 32:42-47. https://doi.org/10.5338/KJEA.2013.32.1.42
  16. Kang, W.H., F. Zhang, J.W. Lee, and J.E. Son. 2016. Improvement of canopy light distribution, photosynthesis, and growth of lettuce (Latuca Sativa L) in plant factory conditions by using filters to diffuse light from LEDs. Korean J. Horti. Sci. Technol. 34:84-93 (in Korean).
  17. Lee, J.E., Y.S. Shing, J.O. Cheung, H.W. Do, and Y.H Kang. 2015. Effect of LED light sources and their installation method on the growth of strawberry plants. Protected Horticulture and Plant Factory 24:106-112 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.2.106
  18. Ministry, A.F.R.A. 2017. Status of vegetable protected greenhouse and vegetables production of 2016 in Korea. Agriculture, food and rural affairs yearbook. web page; http://library.mafra.go.kr/skyblueimage/9872.pdf.
  19. Nadalini, S., P. Zucchi, and C. Andreotti. 2017. Effects of blue and red LED lights on soilless cultivated strawberry growth performances and fruit quality. Eur. J. Hortic. Sci. 82:12-20. https://doi.org/10.17660/eJHS.2017/82.1.2
  20. Najera, C., J.L. Guil-Guerrero, L.J. Enriquez, J.E. Alvaro, and M. Urrestarazu. 2018. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit. Postharvest Biol. Technol. 145:151-156. https://doi.org/10.1016/j.postharvbio.2018.07.008
  21. Patras, A., N.P. Brunton, S. Da-Pieve, and F. Butler. 2009. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innovative Food Sci. Emerging Technol. 10:308-313. https://doi.org/10.1016/j.ifset.2008.12.004
  22. Rahman, M.M. 2016. Determination of maturity indices of strawberry in Dhaka, Bangladesh. Bangladesh J. Bot. 45:1127-1134.
  23. Ruiz, A., M. Sanhueza, F. Gómez, G. Tereucan, T. Valenzuela, S. Garcia, P. Cornejo, and I. Hermosin-Gutierrez. 2018. Changes in the content of anthocyanins, flavonols, and antioxidant activity in Fragaria ananassa var. Camarosa fruits under traditional and organic fertilization. J. Sci. Food Agric. 99:2404-2410.
  24. Tonutare, T., U. Moor, and L. Szajdak. 2014. Strawberry anthocyanin determination by pH differential spectroscopic method-How to get ture results? Acta Sci. Pol., Hortorum Cultus 13:35-47.
  25. Yoon, H.S. 2017. Today and tomorrow of strawberry hydroponics. News Gyeongnam Column. http://www.newsgn.com/sub_read.html?uid=185962§ion=sc8§ion2