• Title/Summary/Keyword: 보강 간격

Search Result 277, Processing Time 0.031 seconds

Evaluation of Shear Capacity According to Transverse Spacing of Wide Beam Shear Reinforced with Steel Plate with Openings (유공형 강판으로 전단보강된 넓은 보에서의 횡방향 보강 간격에 따른 전단성능 평가)

  • Choi, Jin Woong;Kim, Min Sook;Choi, Bong-Seob;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • In this paper, transverse shear spacing and effective depth of wide beams were considered as parameters to evaluate the shear capacity of wide beam according to transverse spacing of steel plates with openings in experimental way. The eight specimens were composed of: five specimens of shear reinforced by steel plates with openings and three non-reinforced specimens. Crack, failure mode, strain and load-displacement curve of specimens were analysed. Shear contribution of shear reinforcement is evaluated and maximum transverse spacing of shear reinforcement was proposed. Shear strength of the specimen that reinforced with three stirrup legs was higher than shear strength of the specimen that reinforced with two stirrup legs. And as the effective depth increased, shear strength was increased.

A Study on the Shear Resisting Effect of Filling-up Carbon Fiber Rod Plastic in Reinforced Concrete Beams with web Reinforcement (전단보강근이 있는 철근콘크리트보의 매립형 CFRP 전단보강효과에 대한 연구)

  • Kim, Woo-Hyoun;Lee, Hyoung-Seok;Kim, Young-Sik;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.65-71
    • /
    • 2005
  • The reinforced concrete becomes deteriorated. In strengthening of reinforced concrete structure, it is recently useing FRP. In research, flexural strengthening of reinforced concrete beam can be Efficient design. But shear srengthening og reinforced concrte beam can't be Efficient design by variable cause. The purpose of this study is to investigate the shear resisting effect of filling-up CFRP in reinforced concrete beams with web reinforced. Ten specimens were manufactured and tested. In the test result, it was analysis. The main variables in the test were a space of web reinforcement and a direction of CFRP.

  • PDF

Efficient Arrangement of Root Piles in Reinforcing the Strip Footing on a Sand Ground (기호보강을 위한 그물식 뿌리말뚝의 효과적인 배치)

  • 이원택;박영호
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • To find out the most efficient arrangement of root piles reinforcing sandy soil under a strip footing, a series of model tests for the patten A of by R.H. Bassett and N.C. Last are carried out. In the model test, the variables adopted are a pile length, longitudinal spacing, and the number of rows of piles. According to the results, the most efficient longitudinal spacing of piles is six times of a pile diameter. When the pile length exceeds five times of footing width, no further increase of reinforcing effect is observed. In the pattern A, piles of second row exhibit the largest reinforcing effect and the fifth row show no significant reinforcing effect on the soil.

  • PDF

Bond Strength of Near Surface-Mounted FRP Plate in Concrete Corresponding to Space and Bond Length (콘크리트에 표면매입 보강된 FRP판의 매입간격과 길이에 따른 부착강도)

  • Seo, Soo-Yeon;Kim, Min-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Recently, experimental and analytical researches have been performed in order to find interface failure between FRP plate and concrete in near surface-mounted (NSM) retrofit using FRP plate. As a result, it was found that the bond strength between concrete and NSM FRP plate had a close relationship with shape of FRP, concrete compressive strength and bond length. However, research need is increasing about another factors such as suitable space of FRP plate and group effect. In this study, therefore, a bond test was performed with aforementioned factors and compared with a previous equation to verify its suitability for predicting bond strength of NSM FRP plate. From the test, it was found that the bond strength increased according to the increase of space of NSM FRP plates even if its bond length was same. The splitting failure of concrete governed when space of FRPs was too narrow and it changed to FRP's tensile failure with increase of the space. From the evaluation of test specimens using previous equation, it was found that the bond strength could be predicted properly with consideration of group effect.

A Study on the Shear Resisting Effect of Filling-up Carbon Fiber Rod Plastic in Reinforced Concrete Beam without Web Reinforcement (전단보강근이 없는 철근콘크리트보의 매립형 CFRP 전단보강효과에 대한 연구)

  • Kim, Young-Sik;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.57-63
    • /
    • 2005
  • The reinforced concrete becomes deteriorated. In strengthening of reinforced concrete structure, it is recently useing FRP. The purpose of this study is to investigate the shear resisting effort of filling-up CFRP in reinforced concrete beams without web reinforced. Six specimens were manufactured and tested. In the test result, it was analysis. The main variables in the test were a space and volume of CFRP.

  • PDF

Reinforcing Efficiency of Micro-Pile with Precast Retaining Wall (프리캐스트 옹벽 마이크로 파일의 보강 효율)

  • Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.61-71
    • /
    • 2008
  • This study investigates the lateral resistance of micro-pile system when surcharge load is acting on the back of retaining wall. Both laboratory experiments and numerical analysis were performed. The experimental retaining wall model was developed on the laboratory-sized foundation. While surcharge load was acting, the interval and length varied as experimental variables. From the investigation it is known that the micro-pile system can effectively control the lateral displacement which is developed on the precast retaining wall. The effectiveness became increased as the pile interval reduced and the length of pile increased. The greatest reinforcing efficiency was shown when the pile length was 0.5H and the interval was 7D.

  • PDF

Evaluation of Punching Shear for Flat Plates Using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 플랫 플레이트의 뚫림전단 성능 평가)

  • Lee, Young Hak;Kim, Min Sook;Hwang, Seung Yeon;Choi, Jinwoong;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.413-420
    • /
    • 2014
  • The purpose of this study is to experimentally investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test was performed on 7 specimens to check shear strength of flat plate that reinforced by GFRP plate. The parameters include the spacing of the shear reinforcement and amount of the shear reinforcement. The result of test showed that when amount of shear reinforcement was increased, shear strength improved. The result of test showed that maximum shear strength was confirmed when spacing of shear reinforcement was 0.3d. The calculation of the shear strength of reinforced flat plate with GFRP plate based on the KCI was compared with the test results.

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.