DOI QR코드

DOI QR Code

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member

축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과

  • 장낙섭 (경상국립대학교 건설시스템공학과) ;
  • 노치훈 (경상국립대학교 건설시스템공학과) ;
  • 오홍섭 (경상국립대학교 건설시스템공학과)
  • Received : 2023.10.25
  • Accepted : 2023.11.07
  • Published : 2023.12.31

Abstract

In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

본 연구에서는 GFRP, BFRP와 CFRP 보강근으로 보강된 콘크리트 시험체의 인장 거동 특성을 실험적으로 분석하였다. FRP 보강근의 인장강도는 설계강도와 유사하게 나타났으나, 탄성계수는 다소 낮게 측정되었다. 또한 인장강화 시험체는 OPC와 SFRC를 사용하여 150(W)×150(B)×1000(H) mm의 크기로 제작하였다. 균열간격은 탄성계수가 낮고 표면이 보다 매끄러운 GFRP 보강근이 가장 크게 나타났으며, 표면이 다소 거친 BFRP와 탄성계수가 높은 CFRP 보강근의 균열간격은 비슷하게 분석되었다. 하중-변형률관계에서도 GFRP보강근은 균열후 다소 급격한 거동을 보인것에 반하여 BFRP와 CFRP 보강근은 균열발생시 다소 안정적인 거동후 일정수준은 인장강화 효과를 유지하였다. 인장강화지수의 경우 직경이 증가할수록 인장강화지수는 다소 작게 분석되었으며, BFRP보다 GFRP의 경우가 인장강화지수는 높게 분석되었다.

Keywords

Acknowledgement

본 연구는 교통과학기술진흥원의 탄소 고분자 부식ZERO 철근대체재 기술개발 연구사업(21CFRP-C163399-01)의 지원에 수행되었습니다.

References

  1. American Concrete Institute (2003), Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI 440.1R-03, Farmington Hills, Michigan, USA.
  2. American Concrete Institute (2012), Guide test methods for fiber-reinforced polymer, ACI 440.3R-12, Farmington Hills, Michigan, USA.
  3. Bischoff, P. H. (2001), Effects of shrinkage on tension stiffening and cracking in reinforced concrete, Canadian Journal of Civil Engineering, 28(3), 363-374. https://doi.org/10.1139/l00-117
  4. Canadian Standards Association (CSA). (2010), "Specification for fibre-reinforced polymers." CAN/CSA-S807, Rexdale, Ontario, Canada.
  5. Canadian Standards Association (CSA). (2012), "Design and construction of building structures with fibre-reinforced polymers." CAN/CSA S806-12, Rexdale, Ontario, Canada.
  6. Fergani, H., Di Benedetti, M., Oller, C. M., Lynsdale, C., and Guadagnini, M. (2018), Long-term performance of GFRP bars in concrete elements under sustained load and environmental actions, Composite Structures, 190, 20-31. https://doi.org/10.1016/j.compstruct.2018.02.002
  7. Gribniak, V., Kaklauskas, G., Torres, L., Daniunas, A., Timinskas, E., and Gudonis, E. (2013), Comparative analysis of deformations and tension-stiffening in concrete beams reinforced with GFRP or steel bars and fibers, Composites Part B: Engineering, 50, 158-170. https://doi.org/10.1016/j.compositesb.2013.02.003
  8. Ha, S. (2005). Direct Tensile Test of GFRP Bar Reinforced Concrete Prisms. In Proceedings of the Korea Concrete Institute Conference (pp. 323-326). Korea Concrete Institute (in Korean).
  9. Jang, N. S., Kim, Y. H., and Oh, H. S. (2021), Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(5), 173-181.
  10. Jang, N. S., Kim, Y. H., and Oh, H. S. (2023), Comparison of the Prediction of Effective Moment of Inertia of FRP Rebar-Reinforced Concrete by an Optimization Algorithm, Materials, 16(2), 621 (in Korean).
  11. Kaklauskas, G., Tamulenas, V., Bado, M. F., and Bacinskas, D. (2018), Shrinkage-free tension stiffening law for various concrete grades, Construction and Building Materials, 189, 736-744. https://doi.org/10.1016/j.conbuildmat.2018.08.212
  12. Kharal, Z., and Sheikh, S. (2017), Tension Stiffening and Cracking Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete, ACI Structural Journal, 114(2).
  13. Nayal, R., and Rasheed, H. A. (2006), Tension stiffening model for concrete beams reinforced with steel and FRP bars, Journal of Materials in Civil Engineering, 18(6), 831-841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831)
  14. Oh, H., Kim, Y., and Jang, N. (2019), An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 51-59 (in Korean).
  15. Rimkus, A., Barros, J. A., Gribniak, V., and Rezazadeh, M. (2019), Mechanical behavior of concrete prisms reinforced with steel and GFRP bar systems, Composite Structures, 220, 273-288. https://doi.org/10.1016/j.compstruct.2019.03.088
  16. Sim, J. S., Oh, H. S., Ju, M. K., and Lim, J. H. (2008), New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar, Journal of the Korea Concrete Institute, 20(2), 185-191 (in Korean). https://doi.org/10.4334/JKCI.2008.20.2.185
  17. Son, B. L., Kim, M. S., Kim, C. H., and Jang, H. S. (2013), Bond characteristic between lightweight concrete and GFRP bar. Journal of the Korea Institute for Structural Maintenance and Inspection, 17(6), 112-121 (in Korean). https://doi.org/10.11112/jksmi.2013.17.6.112
  18. Sooriyaarachchi, H., Pilakoutas, K., and Byars, E. (2005), Tension stiffening behavior of GFRP-reinforced concrete, Special Publication, 230, 975-990.
  19. Taerwe, L., and Matthys, S. (2013), Fib model code for concrete structures 2010.
  20. Vilanova, I., Torres, L., Baena, M., Kaklauskas, G., and Gribniak, V. (2014), Experimental study of tension stiffening in GFRP RC tensile members under sustained load. Engineering structures, 79, 390-400. https://doi.org/10.1016/j.engstruct.2014.08.037