• Title/Summary/Keyword: 변형률 계측

Search Result 200, Processing Time 0.026 seconds

Stress Measuring Method for Beam-Column Members with Long Gauge Fiber Optic Sensors (LGFOS를 이용한 보-기둥 부재의 부재력 계측 기법 개발)

  • Park, Hyo-Seon;Baek, Jae-Min;Lee, Hong-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.9-16
    • /
    • 2006
  • In structural health monitoring, the safety of structural members are assessed by the level of stress measured by various strain sensors based on different sensing mechanisms. Since most existing strain sensors used for health monitoring system can cover a relatively small range of structural members, it is very difficult to measure the maximum value of the member subjected to varying amount and types of loads with those point sensors. The reliability of assessed safety of a member may be improved by increasing the number of sensors. It may not be also realistic to increase the number of sensors to overcome these drawbacks. In this paper, a stress measuring method for beam-column members is developed by estimating the maximum stress based on the average strains obtained from long gauge sensor. The average strain from long gage fiber optic sensor is transformed into the maximum strain by multiplication of the modification factor derived in this research.

A study on the application of the critical strain concept by using the displacements occurring before excavation in tunneling (터널 선행변위를 활용한 한계변형률 개념의 적용 연구)

  • Park, Si-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.337-347
    • /
    • 2008
  • Critical strain is a new material property of the ground. Critical strain concept which was established in tunnel engineering can be applied to deformation limits in the ground due to tunneling by using the measured displacement at the tunnel construction site. In this study, quantitative evaluations for the tunnel stability are conducted by analysing the displacement results obtained at the construction field. Especially, critical stain concept was reviewed from a total displacement point of view using the displacements occurring before excavation. As a results, the variation characteristics of the tunnel stability are presented on the critical strain diagram with or without the preceeding displacements.

  • PDF

A Study on Numerical Analyses and Field Application for Tunneling Using the Critical Strain in the Ground (지반의 한계변형률을 이용한 터널수치해석 및 현장 적용성 연구)

  • Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 2008
  • This study was carried out to assess quantitatively the safety of a tunnel by using critical strains in the ground. Critical strain is a new material property of the ground. It can be applied as deformation limits in the ground due to excavation using the measured displacement at the tunnel construction site. To achieve this purpose, the critical strain concept was reviewed and applied to assess the tunnel safety. First of all, the calculated excavation displacements of a circular tunnel by commercial programs were investigated and inputted into a feedback analysis module to calculate strains in the ground. Then the safety of tunnels was evaluated based on the critical strain concept. Subsequently the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using the critical strain concept. Through this study, it was confirmed that the critical strain concept is useful to assess the safety of tunnels quantitatively.

Estimation Method of Strain Distribution for Safety Monitoring of Multi-span Steel Beam Using FBG Sensor (FBG센서를 이용한 다경간 강재 보 구조물의 안전성 모니터링을 위한 변형률 분포 추정 기법)

  • Oh, Byung-Kwan;Lee, Ji-Hoon;Choi, Se-Woon;Park, Hyo-Seon;Kim, You-Sok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.138-149
    • /
    • 2014
  • This study proposes an estimation method of strain distribution for multi-span steel beam structure under unspecific loading conditions. The estimation method in this paper employs the curve fitting using the least square method from measured strain data, not analytical method. To verify the proposed estimation method, a static loading test for multi-span steel beam on which distributed and concentrated loads act was conducted. The strain data for verification was measured by FBG sensors that have multiplexing technology. The analysis of the accuracy of strain estimation for distributed and concentrated loads and the errors by considering the number of measured points used in the estimation were conducted. In the maximum strain points, the strains could be estimated with the errors of 5.89% (loading step 1) and 6.26% (loading step 2). In case of decreasing the number of sensors, it was also confirmed that the errors increased (0.26~0.37%). Through the curve fitting method, it is possible to estimate the strain distribution (maximum strains and their locations) of multi-span beam for unspecific loads and go over the limit of the analytical estimation method which is suitable for specific distributed loads.

Investigation on the Credibility of the Vibrating Wire Strain Gauges used for the Tunnel Instrumentation (터널 진동현식 변형률 게이지의 신뢰성 시험 연구)

  • Kim, Hak-Joon;Park, Chan
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • Vibrating-wire strain gauges are widely used for the tunnel instrumentation because of the long-term stability at humid environments. Domestic strain gauges are mainly used in Korea due to the high cost of the foreign strain gauges. The credibility of the domestic strain gauges is not properly proven even though strain gauges produced by many different companies are available in the markets. The purpose of this paper is to investigate the credibility of the 2.5" strain gauges by using a laboratory compression test.

Measured Behavior of Full-Scale Soil-Reinforced Segmental Retaining Wall (계단식 형태의 블록식 보강토 옹벽의 거동특성)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.15-25
    • /
    • 2003
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF

A Regression-Based Estimation of Strain Distribution for Safety Monitoring of the Steel Girder Subjected to Uncertain Loads (불확실한 하중을 받는 강재 보 구조물 안전도 모니터링을 위한 변형률 분포의 회귀 분석적 추정)

  • Lee, Ji Hoon;Choi, Se Woon;Park, Hyo Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.10-20
    • /
    • 2013
  • To evaluate the safety of a beam structure, strains are measured as an indicator of structural states. However, unless strain sensors are installed exactly on where maximum or other representative strains occur, the techniques by which rational assessment through measured strains is accomplished are required. Thus, this study suggests a process to estimate strain distribution on the steel beam from discrete strains measured by sensors. In the presented technique, the targeted beam is regarded to be subjected to unknown loads so that applicability is enhanced. Final strain distribution is given as form of a function after regression analysis. To verify the performance of estimation, a bending test for steel beam on which distributed and concentrated loads simultaneously act is conducted. From the comparison between estimated and directly measured strains in the test, the curve of strain distribution and the strain at arbitrary location could be predicted within maximum relative error 3.32% and maximum absolute error of $2.32{\mu}{\varepsilon}$, respectively. Thus reliable and practical monitoring is expected to apply effectively for the steel beam structure.

Deformation Analysis of a Shallow NATM Tunnel using Strain Softening Model and Field Measurement (변형률 연화모델과 현장계측을 이용한 저토피 NATM터널의 변형해석)

  • Lee, Jaeho;Kim, Youngsu;Moon, Hongduk;Kim, Daeman;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.29-36
    • /
    • 2007
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in urban tunnel construction. This paper carried out the estimation and prediction of ground behavior around tunnel due to excavation using computational method and case study in detail for the analysis of deformation behavior in urban NATM tunnel. Computational method was performed by FLAC-2D with strain softening model and elastic plastic model. Field measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and these values were applied to modify tunnel design parameters on construction.

  • PDF

Strain Response Analysis of RC Beams Strengthened with Optical Fiber-embedded CFRP Sheet (광섬유 매립 CFRP 쉬트로 보강한 RC 보의 변형률 응답 분석)

  • Shim, Won-Bo;Hong, Ki-Nam;Yeon, Yeong-Mo;Jung, Kyu-San
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.363-370
    • /
    • 2020
  • This paper reports the results of an experimental study using the BOTDR sensor to detect the unbonded location of attached CFRP sheet for structural rehabilitation. A specimens with the unattached CFRP sheet were fabricated for this study, on which BOTDR sensor was attached with a nylon net. During the flexural test of the specimens, the strain of the CFRP sheet was measured using the BOTDR sensor and electric resistance gauges. From the results, it was confirmed that the strain distribution obtained through the BOTDR sensor can be effectively used to visualize and detect the unbonded position of the CFRP sheet. In addition, In addition, the strain measured by the BOTDR sensor was found to be more effective in analyzing the overall structure behavior than the electric resistance strain gauge. The development of a BOTDR sensor with a measuring longth of less than 100 mm will enable accurate detection of the local unbonded position of the CFRP sheet.

Measurement of Soft Ground Foundation and Rock Slope Behavior Using Spiral Bolt Strain Gauge (스파이럴 볼트 변형률계를 이용한 연약지반기초 및 암반사면 거동 계측)

  • Kang, Seong-Seung;Hirata, Atsuo;Jeong, Seong-Hoi;Lee, Woo-Ram;Je, Dong-Kwang;Kim, Dae-Hyeon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • This study is to consider applicability of spiral bolt strain gauge as an instrument measuring behavior of soft ground foundation and rock slope. When the instrument was installed on the ground, it can be useful to identify the state of ground behavior because it has the characteristics of flexibility, as well as to apply the ground reinforcement because it has higher pull-out resistance to the ground. From the measurement of behavior to soft ground foundation, the strain shows a stable state in the beginning, then was observed significant change in the upper and the middle of spiral bolt strain gauge after 400 days. This is analyzed that ground loosening, which is due to occurred frequent earthquake of magnitude 1~2 with increased rainfall, lead to the instability of the ground. From the measurement of behavior to rock slope, the strain shows a stable state with very little change in a period of 0~50 days and the biggest strain at 4.2 m (P6) in a period of 50~100 days, then other places except P6 was maintained at a stable state in a period of 100~160 days. The reason is analyzed because that blasting for excavated limestone surrounding was affected to the largest at P6. However, based on the size of strain change by behavior of the soft ground foundation and rock slope, it is considered that the present condition are not effected on stability of retaining structure and rock slope. In conclusion, the proposed spiral bolt strain gauge can be useful to measure behavior of soft ground foundation and rock slope, and also to be measured behavior as well as reinforcement of the target ground.