• Title/Summary/Keyword: 변위 근거 유한요소해석

Search Result 41, Processing Time 0.022 seconds

Topology Optimization Using the Chessboard Prevention Strategy (체스판무늬 형성 방지책을 이용한 위상 최적설계)

  • 임오강;이진식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • 변위 근거 유한요소해석을 사용하는 대부분의 위상 최적화 기법은 요소의 안정성 부족으로 인하여 체스판 무늬가 주기적 형태로 반복하여 설계영역 내부에 나타난다. 본 연구에서는 선형요소를 이용하면서 최적화 알고리즘의 안정성에 영향을 주지 않고 간단하게 모든 최적화 알고리즘에 이용 가능한 체스판무늬 형성 방지책을 개발하였다. 본 연구의 체스판무늬 형성 방치책에서는 먼저 각 선형요소를 구성하는 절점들의 부치분율을 설계변수로 선정하고, 요소내부의 부피분율을 설계변수로 표현하기 위한 선형 보간함수로 선형요소들의 형상함수를 선정하였다. 그리고, 설계변수와 등가 재료상수와의 상관 관계식은 평균장 근사이론을 이용하여 균질화된 재료에 벌칙인자가 도입된 관계식을 이용하였다. 또한, 본 연구에서는 순차이차계획법인 PLBA 알고리즘을 이용하여 위상 최적화문제를 해석하였다.

  • PDF

Stability and Post-buckling Analysis of Stiffened Plate and Shell Structures (보강된 판 및 쉘구조의 좌굴 및 후좌굴해석)

  • 김문영;최명수;민병철
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.155-168
    • /
    • 1998
  • 보강된 판 및 쉘구조의 안정성 및 후좌굴을 포함하는 기하학적 비선형 해석을 수행하기 위하여, total Lagrangian formulation에 근거한 연속체의 증분평형방정식으로부터 변형된 쉘요소인 유한요소이론을 제시하였다. 쉘구조의 곡률이 불연속적으로 변하거나 쉘부재들이 유한한 각도로 만나는 보강된 판 및 쉘구조의 비선형 해석이 가능하도록 주부재와 보강재 간의 연결점에 대한 일반적인 변환관계를 제시하였으며 좌굴해석 및 기하학적 비선형해석의 경우에 해의 정확성 및 수렴성을 개선시키기 위하여 접선강도행렬 산정시 회전각의 2차항을 포함시켰다. 또한, shear locking 현상을 극복하기 위하여 감차적분을 적용하였고 쉘구조의 좌굴해석에서는 power method를 적용하여 해석의 효율을 높였으며, 후좌굴해석에서는 변위 및 하중증분법을 적절히 결합시켜 보강된 쉘구조의 후좌굴 거동추적이 용이하였다. 또한, 입력자료를 손쉽게 준비하고 좌굴모드 및 후좌굴거동을 효율적으로 분석하기 위하여 전, 후 처리 프로그램을 개발하였고 다양한 해석예제를 통하여 다른 문헌의 해석결과를 비교함으로써 본 연구에서 개발된 유한요소 해석프로그램의 타당성 및 정확성을 입증하였다.

  • PDF

Geometrically Non-linear Finite Element Analysis of Space Frames (공간뼈대구조의 기하학적 비선형 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.201-211
    • /
    • 1997
  • A clearly consistent finite element formulation for geometrically non-linear analysis of space frames is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, elastic and geometric stiffness matrices of the space frame element are derived by using the Hermitian polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformaions. Finite element solutions for the spatial buckling and post-buckling analysis of space frames are compared with available solutions and other researcher's results.

  • PDF

Stability and Post-Buckling Analyses of Thin-Walled Space Frames Using Finite Element Method (박벽 공간뼈대구조의 안정성 및 후좌굴 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.205-216
    • /
    • 1997
  • In order to trace the lateral post-buckling behaviors of thin-wafled space frames, a geometrically nonlinear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of the thinwalled space frame element with 7 degrees of freedom including the restrained warping for each node are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformations. Finite element solutions for the spatial buckling and post-buckling analysis of thin-walled space frames are presented and compared with available solutions and other researcher's results.

  • PDF

Static Non-linear Finite Element Analysis of Spatial Cable Networks (3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석)

  • 김문영;김남일;안상섭
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.179-190
    • /
    • 1998
  • A geometrically nonlinear finite element formulation of spatial cable networks is presented using two cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static nonlinear behaviors of cable nets.

  • PDF

Earthquake Response Analyses of Underground Structures Using Displacement Responses of Soil (응답변위법을 이용한 지중구조물의 지진해석)

  • Kim, Doo-Kie;Seo, Hyeong-Yeol;Park, Jin-Woo;Choe, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.133-142
    • /
    • 2006
  • This study performed earthquake response analyses of underground structures using displacement responses of soil. In this study, spring coefficients of surrounding soil proposed by specifications and researchers were adopted and then their corresponding analysis results were compared. The free field analyses using ProShake were carried out in order to predict ground responses of the field without underground structures. Several earthquakes such as El Centro, Ofunato, and Hachinohe earthquakes were considered to calculate maximum displacements. Numerical examples were analyzed, and then the results were compared and commented depending on spring coefficients of soil for the analyses using displacement responses of soil. The soil coefficients ranged from 0.05 to 14.39 times of those calculated by Korean Bridge Design Specification (2005). In conclusion, the coefficients of soil proposed by standard specifications seemed to be overestimated compared with those by the finite element method(FEM).

Lateral-Torsional Post-Buckling Analyses of Thin-Walled Space Frames with Non-symmetric Sections (비대칭단면을 갖는 박벽 공간뼈대구조의 횡-비틂 후좌굴 유한요소해석)

  • Park, Hyo Gi;Kim, Sung Bo;Kim, Moon Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.153-165
    • /
    • 1999
  • In order to trace the lateral-torsional post-bucking behaviors of thin-walled space frames with non-symmetric cross sections, a geometrically non-linear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for non-symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of thin-walled space frame element are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines and incremental member forces.

  • PDF

Improved Curved Beam Theory for Vibration and Deflection Analyses (진동 및 처짐해석을 위한 개선된 곡선보이론)

  • Kim, Nam-Il;Choi, Jung-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 2010
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by centroid formulation, previous research and ABAQUS's shell elements.

  • PDF

Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder (초고강도 섬유보강 콘크리트 50M 합성 박스거더의 유한요소해석)

  • Makhbal, Tsas-Orgilmaa;Kim, Do-Hyun;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.100-107
    • /
    • 2018
  • The material and geometrical nonlinear finite elment analysis of UHPFRC 50M composite box girder was carried out. Constitute law in tension and compressive region of UHPFRC and HPC were modeled based on specimen test. The accuracy of nonlinear FEM analysis was verified by the experimental result of UHPFRC 50M composite girder. The UHPFRC 50M segmental composite box girder which has 1.5% steel fiber of volume fraction, 135MPa compressive strength and 18MPa tensile strength was tested. The post-tensioned UHPFRC composite girder consisted of three segment UHPFRC U-girder and High Strength Concrete reinforced slab. The parts of UHPFRC girder were modeled by 8nodes hexahedron elements and reinforcement bars and tendons were built by 2nodes linear elements by Midas FEA software. The constitutive laws of concrete materials were selected Multi-linear model both of tension and compression function under total strain crack model, which was included in classifying of smeared crack model. The nonlinearity of reinforcement elements and tendon was simulated by Von Mises criteria. The nonlinear static analysis was applied by incremental-iteration method with convergence criteria of Newton-Raphson. The validation of numerical analysis was verified by comparison with experimental result and numerical analysis result of load-deflection response, neutral axis coordinate change, and cracking pattern of girder. The load-deflection response was fitted very well with comparison to the experimental result. The finite element analysis is seen to satisfactorily predict flexural behavioral responses of post-tensioned, reinforced UHPFRC composite box girder.

Dynamic Characteristics of Anisotropic Laminated Plates (이방성 복합재료의 동적특성에 관한 연구)

  • Park, Sungjin;Baek, Jooeun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • In this study, the impact problems are brought up and the formulation by isoparametric element is attempted for the purpose of analyzing the response characteristics of laminated plate receiving impact load based on the first-order shear deformation theory expanded from the Mindlin plate theory. The result of static analysis and dynamic analysis is drawn through the numerical analysis rectangular and circular plates of antisymmetric Angle-Ply laminated plate using the finite element method and the analysis on each displacement is compared.