• Title/Summary/Keyword: 변분문제

Search Result 45, Processing Time 0.017 seconds

일반화 볼록공간에서의 평형문제들

  • 박세희
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.197-231
    • /
    • 2000
  • 평형문제들에서의 기본적인 정리들이 일반화 볼록공간에서 어떻게 확장되는가를 보인다. KKM 이론의 중요한 정리들 대부분이 위상벡터공간에서의 선형성을 가정하지 않아도 위상적인 성질만으로 성립한다. 이같은 정리들의 예로는 KKM정리, von Neumann의 최소최대정리와 교차정리, Nash의 평형정리, 여러 가지 부동점정리, 극대원정리, Ky Fan의 최소최대부등식, 변분부등식들, 최량근사정리, 일반화 의사평형문제들의 해의 존재정리들이 있다.

  • PDF

Nonlinear vibration analysis using variational principle (변분원리를 활용한 비선형 진동해석)

  • 박철희;이장무;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.519-527
    • /
    • 1987
  • Simple procedures have been formulated to compute approximate natural frequency of nonlinear systems by the use of variational principle. These procedures are applicable to motion of large amplitudes, even to systems which are not linearizable. The results obtained by these procedures have been found to have good agreements with computer solutions and exact solutions for systems having piece-wise linear springs and polynomial springs.

Design Sensitivity Analysis and Optimization of Plane Arch Structures Using Variational Formulation (변분공식화를 이용한 2차원 아치 구조물의 설계민감도 해석 및 최적설계)

  • 최주호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.159-171
    • /
    • 2001
  • 평면 아치 구조물에 대해 선형 탄성 변분방정식에 기반을 둔 설계민감도 해석을 위한 일반적 이론을 개발하였다. 아치 구조물내의 임의 마디에 정의된 응력범함수를 고려하였고 이에 대한 설계민감도 공식을 유도하기 위해 전미분(material derivative) 개념과 보조(adjoint) 변수 방법을 도입하였다. 얻어진 민감도 공식은 구조해석 결과를 얻고 나면 이들로부터 단순 대수연산을 통해 계산이 되므로 적용이 간편할 뿐 아니라 해의 정확도가 높은 잇점이 있다. 본 방법은 아치의 형상을 매개변수를 통해 표현하므로 얕은 아치에 국한하지 않고 어떠한 형상도 고려가 가능하며, 나아가서 아치의 형상변화를 형상에 대해 수직뿐 아니라 접선방향도 포함하여 일반적으로 고려하므로 다양한 형상설계가 가능하다. 몇 가지 예제에서 민감도 계산을 수행함으로써 본 방법의 정확도와 효율성을 입증하였으며, 두 가지의 설계최적화 문제를 대상으로 실제로 두께 및 형상최적설계를 수행하였다.

  • PDF

A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 선형탄성시스템의 변분동적수치해석법)

  • Kim, Jinkyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The extended framework of Hamilton's principle provides a new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics in terms of mixed formulation. Based upon such framework, a new variational numerical method of linear elasticity is provided for the classical single-degree-of-freedom dynamical systems. For the undamped system, the algorithm is symplectic with respect to the time step. For the damped system, it is shown to be accurate with good convergence characteristics.

A Mixed Variational Principle of Fully Anisotropic Linear Elasticity (이방성탄성문제의 혼합형변분원리)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 1991
  • In this paper, a mixed variational principle applicable to the linear elasticity of inhomogeneous anisotropic materials is presented. For derivation of the general variational principle, a systematic procedure for the variational formulation of linear coupled boundary value problems developed by Sandhu et al. is employed. Consistency condition of the field operators with the boundary operators results in explicit inclusion of boundary conditions in the governing functional. Extensions of admissible state function spaces and specialization to a certain relation in the general governing functional lead to the desired mixed variational principle. In the physical sense, the present variational principle is analogous to the Reissner's recent formulation obtained by applying Lagrange multiplier technique followed by partial Legendre transform to the classical minimum potential energy principle. However, the present one is more advantageous for the application to the general anisotropic materials since Reissner's principle contains an implicit function which is not easily converted to an explicit form.

  • PDF

Point Set Denoising Using a Variational Bayesian Method (변분 베이지안 방법을 이용한 점집합의 오차제거)

  • Yoon, Min-Cheol;Ivrissimtzis, Ioannis;Lee, Seung-Yong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.527-531
    • /
    • 2008
  • For statistical modeling, the model parameters are usually estimated by maximizing a probability measure, such as the likelihood or the posterior. In contrast, a variational Bayesian method treats the parameters of a model as probability distributions and computes optimal distributions for them rather than values. It has been shown that this approach effectively avoids the overfitting problem, which is common with other parameter optimization methods. This paper applies a variational Bayesian technique to surface fitting for height field data. Then, we propose point cloud denoising based on the basic surface fitting technique. Validation experiments and further tests with scan data verify the robustness of the proposed method.

A Boundary Method for Shape Design Sensitivity Analysis in Shape Optimization Problems and its Application (경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용)

  • Kwak Hyun-Gu;Choi Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.255-263
    • /
    • 2005
  • This paper proposes an efficient boundary-based technique for the shape design sensitivity analysis in various disciplines. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in the problems. The formula can be conveniently used for gradient computation in a variety of shape design problems. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite. Perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The potential flow problems and fillet problem are chosen to illustrate the efficiency of the proposed methodology.

Evolutionary Algorithms with Distribution Estimation by Variational Bayesian Mixtures of Factor Analyzers (변분 베이지안 혼합 인자 분석에 의한 분포 추정을 이용하는 진화 알고리즘)

  • Cho Dong-Yeon;Zhang Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1071-1083
    • /
    • 2005
  • By estimating probability distributions of the good solutions in the current population, some researchers try to find the optimal solution more efficiently. Particularly, finite mixtures of distributions have a very useful role in dealing with complex problems. However, it is difficult to choose the number of components in the mixture models and merge superior partial solutions represented by each component. In this paper, we propose a new continuous evolutionary optimization algorithm with distribution estimation by variational Bayesian mixtures of factor analyzers. This technique can estimate the number of mixtures automatically and combine good sub-solutions by sampling new individuals with the latent variables. In a comparison with two probabilistic model-based evolutionary algorithms, the proposed scheme achieves superior performance on the traditional benchmark function optimization. We also successfully estimate the parameters of S-system for the dynamic modeling of biochemical networks.

Second order Temporal Finite Element Methods in Linear Elasticity through the Mixed Convolved Action Principle (혼합 합성 변분이론에 근거한 선형탄성시스템의 이차 시간 유한요소해석법)

  • Kim, Jinkyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.173-182
    • /
    • 2014
  • The mixed convolved action principle provides a new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics in terms of mixed formulation, convolution, and fractional calculus. In this paper, its potential in the development of numerical methods for transient problems in various dynamical systems when adopting temporally second order approximation is investigated. For this, the classical single-degree-of-freedom linear elastic dynamical systems are primarily considered to investigate computational characteristics of the developed algorithms. For the undamped system, all the developed algorithms are symplectic with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

벡터 볼록 최적화 문제를 위한 벡터 변분부등식

  • 이규명
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.587-602
    • /
    • 2003
  • 본 논문에서는 벡터값을 가지는 함수로 이루어진 벡터 변분 부등식들의 해집합사이의 관계, 미분 불가능한 볼록함수로 이루어진 벡터 볼록 최적화 문제의 해집합들과 볼록함수의 아래미분으로 표현된 벡터 변분부등식의 해집합들과의 관계, 제약집합이 볼록 함수로 구체적으로 주어질 때의 벡터 변분부등식의 해가 될 필요 충분조건, 섭동된 강 단조 벡터 변분부등식의 안정성 결과와 섭동된 벡터 강 볼록 최적화문제에의 적용에 대한 최근 연구 결과를 정리한다.