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A Mixed Variational Principle of Fully
Anisotropic Linear Elasticity
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Abstract

In this paper, a mixed variational principle applicable to the linear elasticity of inhomogeneous aniso-
tropic materials is presented. For derivation of the general variational principle, a systematic procedure
for the variational formulation of linear coupled boundary value problems developed by Sandhu et al.
is employed. Consistency condition of the field operators with the boundary operators results in explicit
inclusion of boundary conditions in the governing functional. Extensions of admissible state function
spaces and specialization to a certain relation in the general governing functional lead to the desired
mixed variational principle. In the physical sense, the present variational principle is analogous to the
Reissner’s recent formulation obtained by applying Lagrange multiplier technique followed by partial
Legendre transform to the classical minimum potential energy principle. However, the present one is
more advantageous for the application to the general anisotropic materials since Reissner’s principle
contains an implicit function which is not easily converted to an explicit form.
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A MIXED VARIATIONAL PRINCIPLE OF FULLY ANISOTROPIC LINEAR ELASTICITY

INTRODUCTION

Due to growing importance of variational
principle in the study of theoretical mechanics
as well as in the development of direct appro-
ximate solution procedures for the boundary
value problem, a great research interest has been
attracted to the development of systematic
procedure for derivation of variational principles
governing linear and certain nonlinear boundary
value problems. As representatives of a fairly
large body of literatures on this subject, we cite
the monographs by Mikhlin[1], Vainberg(2), Tonti
(3] and Oden and Reddy[4], wherein references
to other work may be found.

Mikhlin[1] stated the basic variational theorem
for self —adjoint linear operators on an inner
product space, in which the inner product was
used as the nondegenerate bilinear mapping.
Gurtin(5, 6] used convolution product for writing
variational principles governing initial value
problems and explicitly included nonhomogeneous
initial and boundary conditions in the formula-
tion. Sandhu and Pister[7, 8] extended this to
the linear coupled problem. In the context of
application of finite element method to the plate
problem, Prager[9] included, in the variational
formulation, jump discontinuities which may exist
across interelement boundaries. Sandhu and
Salaam[10] examined the general case of linear
operators with nonhomogeneous boundary con-
ditions and internal jump discontinuities based
on the extension of Mikhlin’s theorem. By int-
roducing the concept of boundary operators
consistent with field operators, a systematic
procedure to obtain variational principles for
linear coupled problem was developed.

For elasticity problem, Reissner[11] developed
a mixed vaiational principle that contains disp-
lacement and stress components as the state
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variables and used it for the derivation of app-
roximate theory for the homogeneous isotropic
plate, while potential and complementary energy
principles had been widely used for most app-
lications. Obviously, its development was based
upon his physical intuition. Recently, Reissner
[12] derived another type of mixed variational
principle for the development of anisotropic plate
theory by applying Lagrange multiplier technique
and partial Legendre transform to the
potential energy functional. He later presented
similar version of the principle(13]), which was
derived form the original mixed variational
principle[11], and discussed possibility of its
application to the anisotropic nonhomogeneous
plate like composite laminates. However, explicit
form of the governing functional for the fully
anisotropic material was not given.

In this paper, we present a mixed variational
principle analogous to Reissner’s(12, 13] following
Sandhu’s framework for the variational formu-
lation of coupled boundary value problems. For
the derivation of the governing principle, elas-
ticity equations are first splitted and recast in
a self —adjint form with respect to inner pro-
duct. Extension of the space of admissible state
functions in the general governing functional
and specialization to a certain relation lead to
the desired variational principle. Physical mea-
ning and possible application of the derived
functional are discussed.

VARIATIONAL PRINCIPLE OF COUPLED B.V.P

Consider the boundary value problem

A(w)=fon R )

Cu)=g on 2R )

where R is an open connected region in a
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darpzge A4y A2:35(1991. 6) k-
Euclidean space E®* and 2R is its boundary ; A4, A, M; —> Py 10)
C are linear, bounded differential operators. We
. . such that
also assume that the field operator 4 is self —
adjont, 1e., u € Wy=N"1M; (11)
(Au, vYr={u, Av)p+ D,p(u, v) 3) fieVi=U!-1P; 12)

where (, )z is a nondegenerate bilinear mapping
and D,p(u, v) 1s the quantities associated with
the boundary aR. Sandhu and Salaam[10] gen-
eralized Mikhlin’s basic theorem of variational
principle to show that the functional governing
the problem (1) and (2) is given by

Q)= Au, wg—2¢u, Hr+{Cu, udg

—2Cu, gl 4)

In other words, the Gateaux differential of (4)
along arbitrary path v

8,00 =—2 A+ iy ®)
vanishes if and only if u satisfies (1) and (2),
and the field operator A4 1s consistent with the
boundary operator C, ie.,

D, v)={v, Cu),g—u, Cv),g ©)

The framework of variational formulation stated
above can further be extended to the coupled
boundary value problem with multiple field
variables. With nonhomogeneous boundary con-
ditions, it is written as

/__"Z]A,-,-uj=f,» on R @

,_i]:q,u,:g,- on 2R, i=1,2, «, n 8
in which aR;, denote segments of 2R such that

aR=U_ 2R, C))

and n is the number of independent field var-

iables. Operators A4, are regarded as the trans-
formations that correspond the elements M; onto
P

i
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where W, and V; are the linear vector spaces.
Let ¥V be a linear vector space defined as the
direct sum

VaVi+ Vot 13

and an element u€ ¥V be the ordered set u=
{ty, Uy, *+*, u,} such that u,€ V.. Then, the bilinear
mapping on V is defined as

(u, vIp=A{u; vidg+ + <y, Vg 14)

In line with (3), the set of operators A4; is said
to be self —adjint with respect to this bilinear
mapping if

,Z (wj, Ajiu) g =y, ; Aty g+ Dop(1e, ) (15)

where D,p(u;, u;) denote quantities associated
with aR. If the set of operators 4; is self-adjoint,
as a generalization of (4), the governing funct-
ional of (7) and (8) is defined as

Q@) =30 3 (Cuy Ayt— 2D r+ Cut Coty— 28 o)
(16)

For vanishing of the Gateaux differential of
this functional to imply (7) and (8), the boun-
dary operators C; must be consistent with the
field operators 4,. Sandhu[l4] stated the cons-
istent condition as

Dy pl(u;, w) = Cuy, g Ci}'uj>aR —J; (uja Cittidar
an

In other words, for (16) to be a governing
functional in variational formulation of the
problem given by (7) and (8), the boundary
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operators must satisfy (17). 1 2 5 1 o2

2 9% 07 T2 ax, Co8 Coms Coa

2‘773

SELF—ADJOINT FORM OF ELASTICITY EQUAT- L, 0 Cops Conys Casys l' Oy
IONS

We summarize below the field equations of f.
elasticity and rewrite them in the self —adjoint —f,
form which is necessary to derive variational =1lo @1)
principle. Throughout, all functions are defined 0
on the domain R, closure of the open connected 0
spatial region of interest R. Standard index
notation is used, in which Latin indices take in which d,, is the identity tensor and
on values of 1, 2, 3 and Greek indices take on
value of 1, 2. Summation on repeated indices leé(d‘«yi dﬂya—i;) @
is implied and a comma indicates differentiation
with respect to the spatial coordinate denoted L= 1 @ 2 e 2 23)
by following index. 2 axs  “ox, )

For a linear elastic body, the governing dif-
ferential equations can be written by Elements of the operator matrix in (21) satisfy
self —adjointness in the sense of (15) if the

Equilibrium : ;, ;+/,=0 (18) bilinear mapping is defined as the inner product

Kinematics : e,-j=%(u,-,,+u,-, ) a9 . @r= lufedR @4)

Constitutive Eq £ c 20 Note that this is nondegenerate. The operators
nstitutive Eq. : 0,=E, e, or e;=C; i _
i~ Baetul i Ciprrr (20) on the diagonal are symmetric and the off—

diagonal operators constitute adjoint pairs. It can

in which o, f; are the components of Cauchy be shown that consistent boundary conditions
stress tensor and body force vectors;u;, e; are associated with the field equations (21), in the
the components of displacement vector and sense of (17), are

symmetric linear strain tensor ; Ej; and Cy, are

the components of elasticity and compliance Ulp=Ulp U= U 0D Sy 5)
tensors, respectively. Decomposing these equat- Ul = D7 UM =iNs on S (26)
ions into the components associated with x, and -
X, coordinates and rewriting in matrix form, we ~Celat o) =~ 00 &, N
have —(owns+oum)=—1; on S, (28)
[_O 0 0 1 2 6 L, ar " ‘1 where a superposed circumnflex denctes the value
2 ax, 7 of the prescribed quantity over the boundary
0 o 2 1 2 . surface ;7; and 7, are the components of the
2%, EZ s prescribed traction vector and of the unit out-
R ward normal to the boundary. S, and S, are
0 - 2% Con  Cup Caays ) complementary subsets of aR(Fig.1).
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S1yS2 =aR
SH’]Sz:sp

u1

Fig. 1 Force system of an elastic body embedded in E?
space

Referred to (15) and (17), off —diagonal elem-
ents of the self —adjoint matrix in (21) satisfy
the following relations :

(Ul Ga3, 32R= —(Guz, Uy, 30 R T "a3’73>S,
+4{Gaz, ULly)s, 29
(u, 0y 3o p=—(0p, uz 3Ig+ (U3, G337,
+ (o33, Ush)s, (30$)
(U, Cup, 82R= —Oag, Uy, a) R+ {Ua, o'aﬂ’lﬂ)s,
+ (Oap, uﬂp)s, @D
<u3, aaS, a>R= - (6a37 u3. a>R+ <u3’ aaS”a)Sz
+ (a3, ua)s, (32)

The relations (29)—(32) play a very important
role in deriving various alternative forms of the

general variational principle.

GENERAL VARIATIONAL PRINCIPLE

Using the definition (16), the governing fun-
ctional for the field equations (21) and associated
consistent boundary conditions (25)—(28) can
be written as

Q =C{ty, Gu3 32pt (Uay Fugp, s r+ us, %3, 3R
+ Uz, Oa3 a)rt 2Uas fodr+2{Us, f3)r

~(033, U3 39 p— (Ouz, (Ua 37Uz g
—Oups Ua g

+ (033, Cygpz03+ 2C3303003+ Craas0as) g

+ (2003, Cazzz 033+ 2Ca3y3%3+ CazpeTys) g
+€0upy CapzsO33+ 2Capy30y3+ Capyadys) g
+(Gupy (o ~2Ua)y )5, F (O g, (U3 — 203)7a Vs,
+ (G, (Ua—20a)03) 5.+ (0 (3 — 2043) s,
— oy (Galls+ Ougls) 2.,

— (U3, o357 — 2;3>S, (33)

Let (¥} ={ia, Ws, Gup, Ga3 u} bDe an admissible
state corresponding to the set of field variables
(v} ={us Uz, a5, 043, 03} Assuming that the
{vi+A{¥}, A a scalar, is an admissible state for
all A, Gateaux differential (5) of the functional
(33) gives

A,Q = —2(0u, (U, 3+ 13 o) —2C530505;

—4Co3y30y3— 2Cy5a39y8) &

—2{0up, Ua, 5~ Ca3ap33— 2Cy3060y3

~ Capsysysdr

— (33, tizg— Ci333653— 2Caz330a3 — Cap3s®as)

+2(tay Oug, 3+ Gup, gt fadr

+ 203, 633 3+ 043 ot SR

+2(Gap, (Ua—Ua)p)s,+ 24833, (43, Us)s)s,

+ 2(8u3, (Uz— a3)’7a>s, +2(Gag, (Ua— &a)773>s,

~2ilay (Oapllp+ Tugllz) — 1),

—2(ug, (Ox?3+ Gunta) — ;3>s2 (34

The Gateaux differential (34) vanishes if and
only if all the field equations and boundary
conditions are satisfied due to linearity and

nondegeneracy of the product. In other words,
vanishing of A, Q for all {#} implies satisfaction
of (21) and the boundary conditions (25)—(28)

DERIVATION OF A MIXED VARIATIONAL PRIN-
CIPLE

Eqgs. (29)—(32) relate pairs of off —diagonal
operators in the operator matrix of (21) and may
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be used to eliminate either of elements in each
pair from the functional ). Elimination of an
operator A; implies that state variable u; needs
not to be in the domain M; of A, This results
in relaxing the requirement of differentiability
of u, thereby extending the space of admissible
states.

Through this procedure, numerous alternative
forms of the functional Q are possible, even
though all of them are not enumerated herein.
For the present purpose, however, we use Egs.
(29)—(32) simultaneously to eliminate o,z 4,

Cu3,ar Fa3 3 and 033,3 from Q, glVlng

0= —20op, Uy, pPr—2(0u3, (Ua 3F U3 ))r—2
(o33, U3 3)r
+20tta, fadrt2{us, f1Or
+ {03, Cap01+ 2C33:3%3+ Ca3ap%as)
+ (2043, CazzsOm+2Cu3y30y3+ CazyeOpa) R
+(0up, Capasss+2Capysdys+ Capyedr
+2(0up, (Ua—Ua)p)s,+2(053, (U3—ts)3)s,
+2(0ag, (Ua— )30 5,+ 20003, (U330,
+ 2ty b5+ 2{us, B3ds, (35)

This is equivalent to Hellinger— Reissner variat-
ional principle. For this functional, certain spe-
cializations are possible by constraining the
admissible state to satisfy some field equations.
Assuming that the kinematic relations of x,—x,
plane, i.e. the fifth eq. of (21) is identically
satisfied, Q, reduces to

Qo= —(Oup, Ua, p)R—2(0u3, (Ua, 3% U3 &)IR
—2 (o, u3 3)r
+ 2{ua, fadr+2CUs, f3)R
+ {033, Caaza033+ 2C303003 + CanTas) 8
+(20.3, Cagzz®az+2Caz30y3+ CazpeOypadr
+2(0ap, (Ua—ila)p)s,+2(053, (Uu3—i3)73)s,
+ 200z, (Ua—la)3)s5,+ 203, (Uz—Us)a)s,
+2(uyy L)s,+ 2€us, Iy)s, (36)

Note that by this specialization Gateaux diffe-

rential of the functional ., does not yield the
kinematic relations of x;—x, plane. This means
that this functional is valid only for an elastic
body which undergoes deformation in a way
of satisfying constrained conditions in specializ
ation procedure. This point is noteworthy in
connection with application of this functional.
If we assume further that the displacement
boundary conditions on S, are identically satis-
fied, Q. reduces to

Q3= —0ap, Ua g)R—2(Pa3, (Ua 37 U3 &) g
—2(0a33, U3 3R
+ 2y, fodrt28us, f3O8
+ (033, Ca333033+ 2C3303003+ Ca300ap) &
+ (2043, Cagzzo33+ 2Cazy30y3+ Cazyadye) g
+ 2ty 125, + 24Uy, 13)s, @7

Reissner[12, 13] recently presented two mixed
variational principles similar to 1, but without
boundary terms, which were derived by using
Lagrange multiplier technique and partial Leg-
endre transform in the minimum potential
energy principle and Hellinger-Reissner variational
principle, respectively. The resulted governing
functionals contain partial complementary energy
density functions which are given in an implicit
form. For some special types of elastic materials
with certain symmetry of material properties,
the procedure for obtaining the explicit form
of the governing functional was discussed.
However, for the general anisotropic material,
derivation of the explicit form of the functional
is difficult because of coupling in constitutive
equation. For the general applicability, hence,
it is obvious that the variational principle derived
herein is more advantageous than Reissner’s.

VARIATIONAL EQUATIONS FOR THE SPECIAL
MATERIALS

For convenience in application of the mixed
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variational principle derived above, its variation
is explicitly presented for some special materials
with material symmetries. The mixed variational
principle (37) may be rewritten as

e

03= 2

Ooptls, 5+ Ougllla, 3+ U3 o) T O33U3, 3

> wen—uf3dR— Sout, ds (38)

—Gasuz—
in which

a3 = CazysOys + 2Cuzy30y3+ Cazzi0n (39

e33= Ca3ys0ys + 2Ca330,3+ C333393 (40)

Recalling that in the derivation of the above
functional the kinematic relation in x,—X, plane
was assumed to be identically satisfied, with
some algebra, vanishing of the Gateaux diffe-
rential of }; may be stated as

0=06;= S R {aijd‘“i, j+ d\aﬂzS(uvt, 3ty o— 22&3)

+Gay(uy, 3—ex)
—Ouf;+(0,3Caa33033)}dR

— Ssxd‘u,-tA,- ds 1)
where 6 means variation of the associated
function. This variational equation is valid for
general anisotropic materials. For obtaining
variational equation of a special elastic body with
material property symmetry with respect to
certain plane, only thing to do is to set proper
components of compliance tensor Cy to zero
in e, ex and the last term of the first integral
in (41). For a monoclinic material having mat-
erial symmetry about x,=0, for instance, the
stresses g, 045 are independent of e,; and so
Ciiaz = C12a3=0. .Also, for orthotropic, transversely
isotropic and isotropic materials, normal stresses
are not coupled with shear strains, so compliance
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components to be zero are Ciaps = Ciz = Cioa3
= Clm =0.

DISCUSSION

A mixed variational principle for linear elas-
ticity has been developed using a systematic
procedure developed by Sandhu et al. The
derived principle is applicable to general aniso-
tropic case if deformation is small and the
kinematic relations in x,—x, plane are satifsied.
Even though it can be used as a basis for the
development of approximate solution procedure
such as finite element method, its usefulness
may be more highlighted in the derivation of
approximate theory for anisotropic and inhom-
ogeneous plates and shells, e.g. laminated com-
posites since the theories for such solids are
often based upon the assumed displacement
field, which violates transverse kinematic relations,
while the in—plane kinematics are satisfied. It
should be mentioned here that the derived
principle is analogous to Reissner’s mixed vari-
ational principle. But it has advantages over the
later one because the present one is directly
applicable to any types of anisotropic materials.
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