• Title/Summary/Keyword: 베타세포기능

Search Result 48, Processing Time 0.026 seconds

The Improvement Effects of β-Glucan on Adiposity and Serum Lipids Levels in High Fat Diet-Induced Obese Rats (베타-글루칸의 고지방 식이 유도 비만쥐에서 체지방 및 혈청지질 개선효과)

  • Hong, Kyung Hee;Kim, Hyun-Soon;Jang, Ki-Hyo;Kang, Soon Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3973-3981
    • /
    • 2015
  • This study was aimed to investigate the effect of dietary ${\beta}$-glucan obtained from bacterial fermentation on the adiposity and serum lipids level in rats. Sprague-Dawley rats fed high fat diet for 6 weeks to induce obesity, and subsequently fed with 0% (high fat control group), 0.1% or 0.5% ${\beta}$-glucan supplemented high-fat diets (w/w) for another 5 weeks. For comparison, normal control groups fed AIN-76A diet. Supplemented with 0.1% ${\beta}$-glucan resulted in a significant reduction of high-fat induced peritoneal fat and visceral fat development by 16%, 19%, and 28%, respectively(P<0.05). Serum free fatty acid levels were reduced(by 19%), whereas the HDL cholesterol level was increased(by 50%) by 0.1% dietary ${\beta}$-glucan(P<0.05). In conclusion, dietary ${\beta}$-glucan reduced adiposity and improved serum lipids in obese rats fed high fat diet. The present study suggest that ${\beta}$-glucan supplementation to the diet is beneficial in suppressing diet-induced obesity and dyslipidemia.

The effect of resistance exercise on β-amyloid metabolism and cognitive function in a mouse model of Alzheimer's disease (저항성 운동이 알츠하이머 형질전환 생쥐 뇌의 베타 아밀로이드 대사와 인지기능에 미치는 영향)

  • Jang, Yong-Chul;Koo, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.418-428
    • /
    • 2020
  • The aim of this study was to investigate the effect of resistance exercise(RE) on beta-amyloid(Aβ) metabolism, neuronal cell death, and cognitive function in the transgenic mice model of Alzheimer's disease(AD). Fourteen transgenic(tg) mice and fourteen non-transgenic(non-tg) mice were divided into four groups: (1)non-tg-control(NTC, n=7) (2)non-tg-RE(NTRE, n=7) (3)tg-control(TC, n=7), and (4)tg-RE(TRE, n=7). The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. After then, the cognitive function was measured by using the water maze test, and Aβ metabolism-related proteins, neuronal cell death, and SIRT1/PGC-1α pathway were also measured. Here, we found escape latency and time were significantly increased in the TC compared to the NTC group, but it was significantly reduced in the TRE group, indicating RE may ameliorate cognitive dysfunction. Next, we found an increased in Aβ protein of TC compared to NTC, but it was significantly reduced in the TRE group following RE. In neuronal cell death, Bcl-2 was also significantly decreased and Bax was significantly increased in the TC compared to the NTC group, but RE can increase Bcl-2 and reduce Bax, which may elevate the ratio of Bcl-2/Bax. We further found a decrease in the level of ADAM10 and RARβ protein was significantly increased whereas increased in ROCK1 and BACE1 expression level was significantly reduced following RE in the TRE compared to the TC group. In addition, the level of SIRT1/PGC-1α proteins was decreased in the TC group compared to NTC group, but, these markers were significantly increased in the TRE group following RE. Therefore, our finding indicated that RE may ameliorate cognitive deficits by reducing Aβ protein and neuronal cell death via regulating SIRT1/PGC-1α, amyloidogenic pathway, and non-amyloidogenic pathway, which may play a role in an effective strategy for AD.

Cloning of a Gene Involved in Biosynthesis of ${\beta}-1,3-glucan$ in Saccharomyces cerevisiae (베타-1,3-글루칸 생합성에 관여하는 Saccharomyces cerevisiae 유전자의 클로닝)

  • Jin, Eun-Hee;Lee, Dong-Won;Kim, Jin-Mi;Park, Hee-Moon
    • The Korean Journal of Mycology
    • /
    • v.23 no.2 s.73
    • /
    • pp.129-138
    • /
    • 1995
  • DNA fragment being able to restore in vitro activity of ${\beta}-1,3-glucan$ synthase was cloned by transformation of the Saccharomyces cerevisiae LP353 mutant strain with genomic library constructed in the YCp50. For the selection of transformants which showed no detectable phenotype linked to recovery of the defect in ${\beta}-1,3-glucan$ synthase activity, the colony autoradiography was succesfully applied. The restriction map of the cloned DNA fragment, which is 8.5-kb in length, was constructed. Both the YEplac195 and the YCp50 carrying the 8.5-kb fragment increased ${\beta}-1,3-glucan$ synthase activity of LP353 by two fold. Neither the YEplac195 nor the YCp50 carrying the 8.5-kb DNA fragment, however, complemented the temperature-dependent osmotic sensitivity which is another distinctive phenotype of LP353. Subcloning experiments indicated that a functional region was located in 4.8-kb BglII-KpnI fragment. The 4.8-kb fragment was also able to increase the level of ${\beta}-1,3-glucan$ content in cell wall as well as the resistance of cells to cell wall lytic enzyme, ${\beta}-1,3-glucanase$. The growth rate of the LP353 with 4.8-kb fragment was almost same as that of wild type strain in liquid medium with 1.2 M sorbitol at nonpermissive temperature. Taken these results together, the 4.8-kb fragment seemed to contain the BGS2 gene for ${\beta}-1,3-glucan$ synthase activity in yeast S. cerevisiae.

  • PDF

A study on Anti-diabetic Mechanism of Ethanol Extract of Dendrobii Herba (석곡 에탄올 추출물의 항당뇨 약리기전에 관한 연구)

  • Park, Myung-ji;Lee, Yeoung-Ju
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.275-284
    • /
    • 2019
  • Antidolary active and anti-sugar mechanisms of the ova family (石斛; Dendrobii herba) ethanol extract (EED) were investigated. The EED was administered orally four times a day in a diabetic mouse induced by strepto Joe Toshin to reveal and reveal its pharmacological miracle through experimental studies that reduce the liver function of empty blood sugar, glythamic oxal acetate levels, insulin levels and glutamic acid trans aminaase and glutamic acid pyruvic acid trans amine. EED increased insulin secretion by glucose in RINm5F beta cells as well as intraperitoneal glucose intakes in L6 muscle cells. Thus, EED has shown great promise in displaying anti-diabetes activity not only by increasing insulin secretion but also by increasing intakes per cell, and hopes that future research on pharmacological mechanisms for quartz (Dendrobii herba) ethanol extract will be more active and contribute greatly to the treatment of diabetes.

Physiological activities of poly(amino acid)'s derivatives with β-sheet structure on the skin (베타시트 구조가 도입된 폴리아미노산 유도체의 피부활성에 관한 연구)

  • Shin, Sung Gyu;Han, Sa Ra;Jung, Naseul;Ji, Yoonsook;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1597-1604
    • /
    • 2020
  • In this study, a synthesized poly(amino acid) self-assembly grafted with valine molecules was investigated on the skin activity of skin growth factors. The amphiphilic grafted poly(amino acid) derivatives were successfully synthesized by varying of degree of substitution(DS) and polymerization (DP) with valine molecules forming a β-sheet structure. Then, the pro-collagen biosynthesis of EGF(epidermal growth factor) was improved by 20%, and the inhibitory ability of tyrosinase activity was increased by 6.5 times by self-assembling of EGF with the poly(amino acid)s having β-sheet structures. This strategy of preparing protein self-assembly with poly(amino acid) derivatives will help improve the stability of protein growth factors and use it in medicals as well as cosmeceuticals through skin improvement.

In Vivo Immunological Activity in Fermentation with Black Rice Bran (유색미 미강발효물의 면역활성 효과)

  • Kim, Dong-Ju;Ryu, Su-Noh;Han, Sang-Jun;Kim, Hwa-Young;Kim, Jung-Hak;Hong, Seong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.273-281
    • /
    • 2011
  • Rice bran is byproducts of the hulling of rice, an important food resource in Korea. Various studies have been reported immune-enhancing effects of rice bran cultured with Lentinus edodes. In particular black rice bran contains anthocyanin, and the effects of antioxidant have been reported. The objective of the this study was to investigate the possible immune-enhancing effects of black rice bran substance extracted from a submerged culture of Lentinus edodes with black rice bran (crude fermentation-polysaccharide, CFP) and products(crude fermentation-polysaccharide-S. cerevisiae CFP-S, crude fermentation-polysaccharide-L. gasseri, CFP-L) which are of secondary fermentation of by using Saccharomyces cerevisiae and Lactobacillus gasseri in the Blab/c male mice. We found that supplementation of CFP, CFP-S and CFP-L enhanced macrophage and splenocyte proliferation compared to the control group(NC) in mice. Also, we measured the concentration of cytokines(IFN-${\gamma}$, TNF-${\alpha}$, IL-6) secreted by activated macrophage and splenocyte. The results of the experiment are that supplementation of CFP and CFP-S increased the macrophage and splenocyte proliferation compared to the control group but supplementation of CFP-L decreased the splenoyte proliferation compared to the control group(without mitogen and treated with LPS). When macrophage and splenocyte were stimulated by CFP and CFP-S supplementation, it was increased IFN-${\gamma}$, TNF-${\alpha}$ and IL-6 concentration compared with the control group. These results suggest that the capacity of CFP and CFP-S seem to act as a potent immune modulator causing augmentation of immune cell activity, and enhance the immue function through regulating cytokine production capacity by activated macrophage and splenocyte in mice.

Anti-diabetic mechanism of melania snail (Semisulcospira libertina) protamex hydrolysates (다슬기 protamex 가수분해물(MPH)의 항당뇨 기작 연구)

  • Pyo, Sang-Eun;Choi, Jae-Suk;Kim, Mi-Ryung
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1007-1016
    • /
    • 2017
  • Melania snail (Semisulcospira libertina) was traditionally used as the healthy food in Korea. It was generally known to improve liver function and heal a diabetes. The aim of this study was to elucidate the anti-diabetic mechanism of melanian snail hydrolysates treated with protamex (MPH) by investigating the inhibitory action on protein tyrosine phosphatase 1B (PTP1B), the improving effect on the insulin resistance in C2C12 myoblast and the protective effect for pancreatic beta-cell (INS-1) under the glucose toxicity. The melania snail hydrolysates treated with protamex (MPH), which showed the highest degree of hydrolysis (43%), and inhibited effectively PTP1B activity ($IC_{50}=15.42{\pm}1.1{\mu}g/mL$), of which inhibitory effect was higher than usolic acid, positive control ($IC_{50}=16.65{\mu}g/mL$). MPH increased the glucose uptake in C2C12 myoblast treated with palmitic acid. In addition, MPH increased insulin mRNA expression level by over 160% with enhanced cell viability in INS-1 cell under the high glucose concentration (30 mM). These results suggest that MHP may improve the diabetic symptom by the inhibiting the PTP1B activity, increasing the glucose uptake in muscle cell and protecting the pancreatic beta-cell from glucose toxicity.

Effects of (-)-Epigallocatechin-3-gallate on the Release of Pancreatic Enzymes and Expression of Regenerating Genes in Ethanol-injured Murine Pancreatic Primary Acinar Cells (에탄올에 의하여 유도된 마우스 췌장 선포세포의 염증성 손상에서 췌장분비 효소의 활성 및 세포 재생관련 유전자들의 발현에 미치는 EGCG의 영향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1404-1408
    • /
    • 2013
  • (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has been shown to have strong antibacterial, antiviral, antioxidant, anti-inflammatory, and chemopreventive effects. However it is unknown whether EGCG can recover alcohol-associated pancreatitis. The aim of this study was to investigate the effects of EGCG on pancreatic enzyme activities and the expressions of pancreatic regenerating related markers, such as adenosine monophosphate-activated protein kinase (AMPK), raf-1 kinase inhibitor protein (RKIP), and Regenerating gene 1 (Reg1), in mice pancreatic primary acinar cells. Our results revealed that activities of ${\alpha}$-amylase and chymotrypsin were significantly increased in the cells treated with ethanol compared to the untreated control cells; however, the increased activities of both enzymes were markedly reduced by pretreatment with EGCG. Phosphorylation of AMPK and total expression of RKIP were decreased in the ethanol-treated primary acinar cells; however, these were both significantly increased in the EGCG-pretreated cells. In addition, when EGCG was treated, expression of Reg1 was markedly increased compared with that of the control or the ethanol-treated primary acinar cells, demonstrating that EGCG can modulate pancreatic regenerating related genes. Therefore, our findings suggest that EGCG may have therapeutic utility in the prevention or treatment of alcohol-associated pancreatitis.

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.

Platelets as a Source of Peripheral Aβ Production and Its Potential as a Blood-based Biomarker for Alzheimer's Disease (말초 아밀로이드 베타 원천으로서의 혈소판과 알츠하이머병의 혈액 바이오마커로서의 가능성)

  • Kang, Jae Seon;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1118-1127
    • /
    • 2020
  • Alzheimer's disease causes progressive neuronal loss that leads to cognitive disturbances. It is not currently curable, and there is no way to stop its progression. However, since medical treatment for Alzheimer's disease is most effective in the early stages, early detection can provide the best chance for symptom management. Biomarkers for the diagnosis of Alzheimer's disease include amyloid β (Aβ) deposition, pathologic tau, and neurodegeneration. Aβ deposition and phosphorylated tau can be detected by cerebrospinal fluid (CSF) analysis or positron emission tomography (PET). However, CSF sampling is quite invasive, and PET analysis needs specialized and expensive equipment. During the last decades, blood-based biomarker analysis has been studied to develop fast and minimally invasive biomarker analysis method. And one of the remarkable findings is the involvement of platelets as a primary source of Aβ in plasma. Aβ can be transported across the blood - brain barrier, creating an equilibrium of Aβ levels between the brain and blood under normal condition. Interestingly, a number of clinical studies have unequivocally demonstrated that plasma Aβ42/Aβ40 ratios are reduced in mild cognitive impairment and Alzheimer's disease. Together, these recent findings may lead to the development of a fast and minimally invasive early diagnostic approach to Alzheimer's disease. In this review, we summarize recent advances in the biomarkers of Alzheimer's disease, especially the involvement of platelets as a source of peripheral Aβ production and its potential as a blood-based biomarker.