Browse > Article
http://dx.doi.org/10.12925/jkocs.2020.37.3.418

The effect of resistance exercise on β-amyloid metabolism and cognitive function in a mouse model of Alzheimer's disease  

Jang, Yong-Chul (Exercise biochemistry Laboratory, Korea National Sport University)
Koo, Jung-Hoon (Institute of Sport Science, Korea National Sport University)
Publication Information
Journal of the Korean Applied Science and Technology / v.37, no.3, 2020 , pp. 418-428 More about this Journal
Abstract
The aim of this study was to investigate the effect of resistance exercise(RE) on beta-amyloid(Aβ) metabolism, neuronal cell death, and cognitive function in the transgenic mice model of Alzheimer's disease(AD). Fourteen transgenic(tg) mice and fourteen non-transgenic(non-tg) mice were divided into four groups: (1)non-tg-control(NTC, n=7) (2)non-tg-RE(NTRE, n=7) (3)tg-control(TC, n=7), and (4)tg-RE(TRE, n=7). The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. After then, the cognitive function was measured by using the water maze test, and Aβ metabolism-related proteins, neuronal cell death, and SIRT1/PGC-1α pathway were also measured. Here, we found escape latency and time were significantly increased in the TC compared to the NTC group, but it was significantly reduced in the TRE group, indicating RE may ameliorate cognitive dysfunction. Next, we found an increased in Aβ protein of TC compared to NTC, but it was significantly reduced in the TRE group following RE. In neuronal cell death, Bcl-2 was also significantly decreased and Bax was significantly increased in the TC compared to the NTC group, but RE can increase Bcl-2 and reduce Bax, which may elevate the ratio of Bcl-2/Bax. We further found a decrease in the level of ADAM10 and RARβ protein was significantly increased whereas increased in ROCK1 and BACE1 expression level was significantly reduced following RE in the TRE compared to the TC group. In addition, the level of SIRT1/PGC-1α proteins was decreased in the TC group compared to NTC group, but, these markers were significantly increased in the TRE group following RE. Therefore, our finding indicated that RE may ameliorate cognitive deficits by reducing Aβ protein and neuronal cell death via regulating SIRT1/PGC-1α, amyloidogenic pathway, and non-amyloidogenic pathway, which may play a role in an effective strategy for AD.
Keywords
Alzheimer's disease; Amyloid beta; resistance exercise; Amyloidogenic pathway; Non-amyloidogenic pathway; Neuronal cell death;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. P. Cleary, D. M. Walsh, J. J. Hofmeister, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH, "Natural oligomers of the amyloid-${\beta}$ protein specifically disrupt cognitive function", Nature neuroscience, Vol8, No.1 pp. 79-84, (2005).   DOI
2 L. R. Clark, A. M. Racine, R. L. Koscik, O. C. Okonkwo, C. D. Engelman, C. M. Carlsson, S. Asthana, B. B. Bendlin, R. Chappell, C. R. Nicholas, H. A. Rowley, J. M. Oh, B. P. Hermann, M. A. Sager, B. T. Christian, S. C. Johnson, "Beta-amyloid and cognitive decline in late middle age: Findings from the Wisconsin Registry for Alzheimer's Prevention study", Alzheimer's & Dementia, Vol12, No.7 pp. 805-814, (2016).   DOI
3 H. S. Um, E. B. Kang, J. H. Koo, H. T. Kim, Jin-Lee, E. J. Kim, C. H. Yang, G. Y. An, I. H. Cho, J. Y. Cho, "Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease", Neuroscience research, Vol69, No.2 pp. 161-173, (2011).   DOI
4 F. Kamenetz, T. Tomita, H. Hsieh, G. Seabrook, D. Borchelt, T. Iwatsubo, S. Sisodia, R. Malinow, "APP processing and synaptic function", Neuron, Vol37, No.6 pp. 925-937, (2003).   DOI
5 G. Marwarha, S. Raza, C. Meiers, O. Ghribi, "Leptin attenuates BACE1 expression and amyloid-${\beta}$ genesis via the activation of SIRT1 signaling pathway", Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, Vol1842, No.9 pp. 1587-1595, (2014).   DOI
6 H. R. Lee, H. K. Shin, S. Y. Park, H. Y. Kim, W. S. Lee, B. Y. Rhim, K. W. Hong, C. D. Kim, "Cilostazol suppresses ${\beta}$-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-${\beta}$", Journal of neuroscience research, Vol92, No.11 pp. 1581-1590., (2014).   DOI
7 Y. I. Kim, D. P. Ok, S. Y. Cho, "The Effects of Regular Taekwondo Exercise on Brain wave activation and Neurotrophic Factors in Undergraduate male students", Journal of the Korean Applied Science and Technology, Vol35, No.2 pp. 412-422., (2018).
8 K. Bromley-Brits, Y. Deng, W. Song, "Morris water maze test for learning and memory deficits in Alzheimer's disease model mice", Journal of Visualized Experiments, Vol53, e2920, (2011).
9 D. Y. Hwang, K. R. Chae, T .S. Kang, J. H. Hwang, C. H. Lim, H. K. Kang, J. S. Goo, M. R. Lee, H. J. Lim, S. H. Min, J. Y. Cho, J. T. Hong, C. W. Song, S. G. Paik, J. S. Cho, Y. K. Ki, "Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer's disease", Federation of American Societies for Experimental Biology, Vol16 No.8 pp. 805-813., (2002).   DOI
10 L. W. Bradford, "Problems of ethics and behavior in the forensic sciences", Journal of forensic sciences, Vol21, No.2 pp. 763-768., (1976).   DOI
11 P. H. Reddy, X. Yin, M. Manczak, S. Kumar, J. A. Pradeepkiran, M. Vijayan, A. P. Reddy, "Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease", Human molecular genetics, Vol.27, No.14 pp. 2502-2516, (2018).   DOI
12 H. J. Nam, S. H. Hwang, Y. J. Kim, K. W. Kim, "Korean Dementia observatory 2018", Seoul Central Dementia Center, Ministry of Health and Welfare, (2018).
13 D. J. Selkoe, J. Hardy, "The amyloid hypothesis of Alzheimer's disease at 25 years", EMBO molecular medicine, Vol.8, No.6 pp. 595-608, (2016).   DOI
14 G Botteri, L Salvado, A. Guma, Lee D. Hamilton, P. J. Meakin, G. Montagut, M. L. J. Ashford, V. Ceperuelo-Mallafre, S. Fernandez-Veledo, J. Vendrell, M. Calderon-Dominguez, D. Serra, L. Herrero, J. Pizarro, E. Barroso, X. Palomer, M. Vazquez-Carrera, "The BACE1 product $sAPP{\beta}$ induces ER stress and inflammation and impairs insulin signaling", Metabolism, Vol.85, pp. 59-75, (2018).   DOI
15 L. A. van der Kleij, E. T. Petersen, H. R Siebner, J. Hendrikse, K. S. Frederiksen, N. A. Sobol, S. G. Hasselbalch, E. Garde, "The effect of physical exercise on cerebral blood flow in Alzheimer's disease", NeuroImage: Clinical, Vol20, pp. 650-654, (2018).   DOI
16 R. J. Mullins, T. C. Diehl, C. W. Chia, D. Kapogiannis, "Insulin resistance as a link between Amyloid-Beta and Tau pathologies in Alzheimer's disease", Frontiers in Aging Neuroscience, Vol.9, pp. 118, (2017).   DOI
17 V. Sharma, P. Nagu, R. Thakur, P. Sharma, H. Kumar, "Amyloid Beta Mediated Mitochondrial Dysfunction in Alzheimer's disease: A Mini Review", Current Pharma Research, Vol.9, No.3 pp. 2981-2990, (2019).   DOI
18 W. H. Organization, "Risk reduction of cognitive decline and dementia: WHO guidelines", in Risk reduction of cognitive decline and dementia: WHO guidelines. pp. 401-401, (2019).
19 H. C. Park, J. U. Cheon, "Effects of 16-week Combined Exercise on Dementia, Depression, and Cognitive Function in Elderly Women", Journal of the Korean Applied Science and Technology, Vol36, No.2 pp. 456-467, (2019).   DOI
20 T. Matsui, H. Omuro, Y. F. Liu, M. Soya, T. Shima, B. S. McEwen, H. Soya, "Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity", Proceedings of the National Academy of Sciences, Vol114, No.24 pp. 6358-6363, (2017).   DOI
21 J. H. Koo, E. B. Kang, Y. S. Oh, D. S. Yang, J. Y. Cho, "Treadmill exercise decreases amyloid-${\beta}$ burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer's disease", Experimental neurology, Vol288, No.5 pp. 142-152, (2017).   DOI
22 F. Liang, T. Huang, B. Li, Y. Zhao, X. Zhang, B. Xu, "High-intensity interval training and moderate-intensity continuous training alleviate ${\beta}$-amyloid deposition by inhibiting NLRP3 inflammasome activation in APPswe/PS1dE9 mice", NeuroReport, Vol31, No.5 pp. 425-432, (2020).   DOI
23 B. Zeng, G. Zhao, H. L. Liu, "The differential effect of treadmill exercise intensity on hippocampal soluble $a{\beta}$ and lipid metabolism in APP/PS1 mice", Neuroscience, Vol430, pp. 73-81, (2020).   DOI
24 L. Woost, P. L. Bazin, M. Taubert, R. Trampel, C. L. Tardif, A. Garthe, G. Kempermann, U. Renner, G. Stalla, D. V. M. Ott, V. Rjosk, H. Obrig, A. Villringer, E. Roggenhofer, T. A. Klein, "Physical exercise and spatial training: a longitudinal study of effects on cognition, growth factors, and hippocampal plasticity", Scientific reports, Vol8, No.1 pp. 1-13, (2018).   DOI
25 C. McGlory, M. C. Devries, S. M. Phillips, "Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling", Journal of Applied Physiology, Vol122, No.3 pp. 541-548, (2017).   DOI
26 S. E. Lamb, D. Mistry, S. Alleyne, N. Atherton, D. Brown, B. Copsey, S. Dosanjh, S. Finnegan, B. Fordham, F. Griffiths, S. Hennings, I. Khan, K. Khan, R. Lall, S. Lyle, V. Nichols, S. Petrou, P. Zeh, B. Sheehan, "Aerobic and strength training exercise programme for cognitive impairment in people with mild to moderate dementia: the DAPA RCT", Health Technology Assessment, Vol22, No.28 pp. 1-202, (2017).
27 E. M. P. ortugal, P. G. Vasconcelos, R. Souza, E. Lattari, R. S. Monteiro-Junior, S. Machado, A. C. Deslandes, "Aging process, cognitive decline and Alzheimers disease: can strength training modulate these responses?", CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), Vol14, No.9 pp. 1209-1213, (2015).   DOI
28 K. J. Marston, M. J. Newton, B. M. Brown, S. R. Rainey-Smith, S. Bird, R. N. Martins, J. J. Peiffer., "Intense resistance exercise increases peripheral brain-derived neurotrophic factor", Journal of science and medicine in sport, Vol20, No.10 pp. 899-903, (2017).   DOI
29 K. M. Broadhouse, M. F. Singh, C. Suo, N. Gates, W. Wen, H. Brodaty, N. Jain, G. C. Wilson, J. Meiklejohn, N. Singh, B. T. Baune, M. Baker, N. Foroughi, Y. Wang, N. Kochan, K. Ashton, M. Brown, Z. Li, Y. Mavros, P. S. Sachdev, M. J. Valenzuela, "Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI", NeuroImage: Clinical, Vol25, pp. 102-182, (2020).
30 M. C. Chang, A. Y. Lee, S. Kwak, S. G. Kwak, "Effect of resistance exercise on depression in mild Alzheimer disease patients with sarcopenia", The American Journal of Geriatric Psychiatry, Vol28, No.5 pp. 587-589, (2019).   DOI
31 T. M. Vital, S. S. S. Hernandez, R. V. Pedroso, C. V. L Teixeira, M. Garuffi, A. M. Stein, J. L. R. Costa, F. Stella, "Effects of weight training on cognitive functions in elderly with Alzheimer's disease", Dementia & neuropsychologia, Vol6, No.4 pp. 253-259, (2015).