Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.12.1118

Platelets as a Source of Peripheral Aβ Production and Its Potential as a Blood-based Biomarker for Alzheimer's Disease  

Kang, Jae Seon (Department of Pharmacy, Kyungsung University)
Choi, Yun-Sik (Department of Pharmacy, Kyungsung University)
Publication Information
Journal of Life Science / v.30, no.12, 2020 , pp. 1118-1127 More about this Journal
Abstract
Alzheimer's disease causes progressive neuronal loss that leads to cognitive disturbances. It is not currently curable, and there is no way to stop its progression. However, since medical treatment for Alzheimer's disease is most effective in the early stages, early detection can provide the best chance for symptom management. Biomarkers for the diagnosis of Alzheimer's disease include amyloid β (Aβ) deposition, pathologic tau, and neurodegeneration. Aβ deposition and phosphorylated tau can be detected by cerebrospinal fluid (CSF) analysis or positron emission tomography (PET). However, CSF sampling is quite invasive, and PET analysis needs specialized and expensive equipment. During the last decades, blood-based biomarker analysis has been studied to develop fast and minimally invasive biomarker analysis method. And one of the remarkable findings is the involvement of platelets as a primary source of Aβ in plasma. Aβ can be transported across the blood - brain barrier, creating an equilibrium of Aβ levels between the brain and blood under normal condition. Interestingly, a number of clinical studies have unequivocally demonstrated that plasma Aβ42/Aβ40 ratios are reduced in mild cognitive impairment and Alzheimer's disease. Together, these recent findings may lead to the development of a fast and minimally invasive early diagnostic approach to Alzheimer's disease. In this review, we summarize recent advances in the biomarkers of Alzheimer's disease, especially the involvement of platelets as a source of peripheral Aβ production and its potential as a blood-based biomarker.
Keywords
Alzheimer's disease; amyloid ${\beta}$; biomarker; blood; platelet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Biino, G., Santimone, I., Minelli, C., Sorice, R., Frongia, B., Traglia, M., Ulivi, S., Di Castelnuovo, A., Gogele, M., Nutile, T., Francavilla, M., Sala, C., Pirastu, N., Cerletti, C., Iacoviello, L., Gasparini, P., Toniolo, D., Ciullo, M., Pramstaller, P., Pirastu, M., de Gaetano, G. and Balduini, C. L. 2013. Ageand sex-related variations in platelet count in Italy: a proposal of reference ranges based on 40987 subjects' data. PLoS One 8, e54289.   DOI
2 Blennow, K., De Meyer, G., Hansson, O., Minthon, L., Wallin, A., Zetterberg, H., Lewczuk, P., Vanderstichele, H., Vanmechelen, E., Kornhuber, J., Wiltfang, J.; KND-Study Group, Heuser, I., Maier, W., Luckhaus, C., Ruther, E., Hull, M., Jahn, H., Gertz, H. J., Frolich, L., Hampel, H. and Pernetzki, R. 2009. Evolution of Abeta42 and Abeta40 levels and Abeta42/Abeta40 ratio in plasma during progression of Alzheimer's disease: a multicenter assessment. J. Nutr. Health Aging 13, 205-208.   DOI
3 Bu, X. L., Xiang, Y., Jin, W. S., Wang, J., Shen, L. L., Huang, Z. L., Zhang, K., Liu, Y. H., Zeng, F., Liu, J. H., Sun, H. L., Zhuang, Z. Q., Chen, S. H., Yao, X. Q., Giunta, B., Shan, Y. C., Tan, J., Chen, X. W., Dong, Z. F., Zhou, H. D., Zhou, X. F., Song, W. and Wang, Y. J. 2018. Blood-derived amyloid-β protein induces Alzheimer's disease pathologies. Mol. Psychiatry 23, 1948-1956.   DOI
4 Bulbarelli, A., Lonati, E., Brambilla, A., Orlando, A., Cazzaniga, E., Piazza, F., Ferrarese, C., Masserini, M. and Sancini, G. 2012. Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol. Cell Neurosci. 49, 415-422.   DOI
5 Buniatian, G. H., Hartmann, H. J., Traub, P., Wiesinger, H., Albinus, M., Nagel, W., Shoeman, R., Mecke, D. and Weser, U. 2002. Glial fibrillary acidic protein-positive cells of the kidney are capable of raising a protective biochemical barrier similar to astrocytes: expression of metallothionein in podocytes. Anat. Rec. 267, 296-306.   DOI
6 Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K. and Xu, H. E. 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205-1235.   DOI
7 Chao, A. C., Lee, T. C., Juo, S. H. and Yang, D. I. 2016. Hyperglycemia increases the production of amyloid beta-peptide leading to decreased endothelial tight junction. CNS Neurosci. Ther. 22, 291-297   DOI
8 Chen, S. H., Bu, X. L., Jin, W. S., Shen, L. L., Wang, J., Zhuang, Z. Q., Zhang, T., Zeng, F., Yao, X. Q., Zhou, H. D. and Wang, Y. J. 2017. Altered peripheral profile of blood cells in Alzheimer disease: A hospital-based case-control study. Medicine (Baltimore) 96, e6843.   DOI
9 Chen, M., Inestrosa, N. C., Ross, G. S. and Fernandez, H. L. 1995. Platelets are the primary source of amyloid beta-peptide in human blood. Biochem. Biophys. Res. Commun. 213, 96-103.   DOI
10 Cheng, Y., Tian, D. Y. and Wang, Y. J. 2020. Peripheral clearance of brain-derived Aβ in Alzheimer's disease: pathophysiology and therapeutic perspectives. Transl. Neurodegener. 9, 16.   DOI
11 Evin, G. and Li, Q. X. 2012. Platelets and Alzheimer's disease: Potential of APP as a biomarker. World J. Psychiatry 2, 102-113.   DOI
12 Chouraki, V., Beiser, A., Younkin, L., Preis, S. R., Weinstein, G., Hansson, O., Skoog, I., Lambert, J. C., Au, R., Launer, L., Wolf, P. A., Younkin, S. and Seshadri, S. 2015. Plasma amyloid-β and risk of Alzheimer's disease in the Framingham Heart Study. Alzheimers Dement. 11, 249-257.   DOI
13 Colciaghi, F., Borroni, B., Pastorino, L., Marcello, E., Zimmermann, M., Cattabeni, F., Padovani, A. and Di Luca, M. 2002. α-Secretase ADAM10 as well as αAPPs is reduced in platelets and CSF of Alzheimer disease patients. Mol. Med. 8, 67-74.   DOI
14 Davies, T. A., Billingslea, A. M., Long, H. J., Tibbles, H., Wells, J. M., Eisenhauer, P. B., Smith, S. J., Cribbs, D. H., Fine, R. E. and Simons, E. R. 1998. Brain endothelial cell enzymes cleave platelet-retained amyloid precursor protein. J. Lab. Clin. Med. 132, 341-350.   DOI
15 d'Uscio, L. V., He, T. and Katusic, Z. S. 2017. Expression and processing of amyloid precursor protein in vascular endothelium. Physiology (Bethesda) 32, 20-32.
16 d'Uscio, L. V. and Katusic, Z. S. 2019. Vascular phenotype of amyloid precursor protein-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 316, H1297-H1308.   DOI
17 Evin, G., Zhu, A., Holsinger, R. M., Masters, C. L. and Li, Q. X. 2003. Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. J. Neurosci. Res. 74, 386-392.   DOI
18 Fandos, N., Perez-Grijalba, V., Pesini, P., Olmos, S., Bossa, M., Villemagne, V. L., Doecke, J., Fowler, C., Masters, C. L. and Sarasa, M. AIBL Research Group. 2017. Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement (Amst). 8, 179-187.   DOI
19 Gowert, N. S., Donner, L., Chatterjee, M., Eisele, Y. S., Towhid, S. T., Munzer, P., Walker, B., Ogorek, I., Borst, O., Grandoch, M., Schaller, M., Fischer, J. W., Gawaz, M., Weggen, S., Lang, F., Jucker, M. and Elvers, M. 2014. Blood platelets in the progression of Alzheimer's disease. PLoS One 9, e90523.   DOI
20 Graff-Radford, N. R., Crook, J. E., Lucas, J., Boeve, B. F., Knopman, D. S., Ivnik, R. J., Smith, G. E., Younkin, L. H., Petersen, R. C. and Younkin, S. G. 2007. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol. 64, 354-362.   DOI
21 Guest, F. L., Rahmoune, H. and Guest, P. C. 2020. Early diagnosis and targeted treatment strategy for improved therapeutic outcomes in Alzheimer's disease. Adv. Exp. Med. Biol. 1260, 175-191.   DOI
22 Nayak, M. K., Kulkarni, P. P. and Dash, D. 2013. Regulatory role of proteasome in determination of platelet life span. J. Biol. Chem. 288, 6826-6834.   DOI
23 McGuinness, B., Fuchs, M., Barrett, S. L., Passmore, A. P. and Johnston, J. A. 2016. Platelet membrane β-secretase activity in mild cognitive impairment and conversion to dementia: a longitudinal study. J. Alzheimers Dis. 49, 1095-1103.
24 Muche, A., Burger, S., Arendt, T. and Schliebs, R. 2015. Hypoxic stress, brain vascular system, and β-amyloid: a primary cell culture study. Nutr. Neurosci. 18, 1-11.   DOI
25 Nakamura, A., Kaneko, N., Villemagne, V. L., Kato, T., Doecke, J., Dore, V., Fowler, C., Li, Q. X., Martins, R., Rowe, C., Tomita, T., Matsuzaki, K., Ishii, K., Ishii, K., Arahata, Y., Iwamoto, S., Ito, K., Tanaka, K., Masters, C. L. and Yanagisawa, K. 2018. High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature 554, 249-254.   DOI
26 Nguyen, K. V. 2018. Special Issue: Alzheimer's disease. AIMS Neurosci. 5, 74-80.   DOI
27 Okereke, O. I., Xia, W., Selkoe, D. J. and Grodstein, F. 2009. Ten-year change in plasma amyloid beta levels and late-life cognitive decline. Arch. Neurol. 66, 1247-1253.   DOI
28 Ovod, V., Ramsey, K. N., Mawuenyega, K. G., Bollinger, J. G., Hicks, T., Schneider, T., Sullivan, M., Paumier, K., Holtzman, D. M., Morris, J. C., Benzinger, T., Fagan, A. M., Patterson, B. W. and Bateman, R. J. 2017. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 13, 841-849.   DOI
29 Perez-Grijalba, V., Romero, J., Pesini, P., Sarasa, L., Monleon, I., San-Jose, I., Arbizu, J., Martinez-Lage, P., Munuera, J., Ruiz, A., Tarraga, L., Boada, M. and Sarasa, M. 2019. Plasma Aβ42/40 ratio detects early stages of Alzheimer's disease and correlates with CSF and neuroimaging biomarkers in the AB255 study. J. Prev. Alzheimers Dis. 6, 34-41.
30 Mantzavinos, V. and Alexiou, A. 2017. Biomarkers for Alzheimer's disease diagnosis. Curr. Alzheimer Res. 14, 1149- 1154.
31 Roher, A. E., Esh, C. L., Kokjohn, T. A., Castano, E. M., Van Vickle, G. D., Kalback, W. M., Patton, R. L., Luehrs, D. C., Daugs, I. D., Kuo, Y. M., Emmerling, M. R., Soares, H., Quinn, J. F., Kaye, J., Connor, D. J., Silverberg, N. B., Adler, C. H., Seward, J. D., Beach, T. G. and Sabbagh, M. N. 2009. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease. Alzheimers Dement. 5, 18-29.   DOI
32 Santimone, I., Di Castelnuovo, A., De Curtis, A., Spinelli, M., Cugino, D., Gianfagna, F., Zito, F., Donati, M. B., Cerletti, C., de Gaetano, G., Iacoviello, L. and MOLI-SANI Project Investigators. 2011. White blood cell count, sex and age are major determinants of heterogeneity of platelet indices in an adult general population: results from the MOLI-SANI project. Haematologica 96, 1180-1188.   DOI
33 Schupf, N., Tang, M. X., Fukuyama, H., Manly, J., Andrews, H., Mehta, P., Ravetch, J. and Mayeux, R. 2008. Peripheral Abeta subspecies as risk biomarkers of Alzheimer's disease. Proc. Natl. Acad. Sci. USA. 105, 14052-14057.   DOI
34 Segal, J. B. and Moliterno, A. R. 2006. Platelet counts differ by sex, ethnicity, and age in the United States. Ann. Epidemiol. 16, 123-130.   DOI
35 Sonkar, V. K., Kulkarni, P. P. and Dash, D. 2014. Amyloid β peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization. FASEB J. 28, 1819-1829.   DOI
36 Sevush, S., Jy, W., Horstman, L. L., Mao, W. W., Kolodny, L. and Ahn, Y. S. 1998. Platelet activation in Alzheimer disease. Arch. Neurol. 55, 530-536.   DOI
37 Shahpasand-Kroner, H., Klafki, H. W., Bauer, C., Schuchhardt, J., Huttenrauch, M., Stazi, M., Bouter, C., Wirths, O., Vogelgsang, J. and Wiltfang, J. 2018. A two-step immunoassay for the simultaneous assessment of Aβ38, Aβ40 and Aβ42 in human blood plasma supports the Aβ42/Aβ40 ratio as a promising biomarker candidate of Alzheimer's disease. Alzheimers Res. Ther. 10, 121.   DOI
38 Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., Holtzman, D. M., Miller, C. A., Strickland, D. K., Ghiso, J. and Zlokovic, B. V. 2000. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489-1499.   DOI
39 Stakos, D. A., Stamatelopoulos, K., Bampatsias, D., Sachse, M., Zormpas, E., Vlachogiannis, N. I., Tual-Chalot, S. and Stellos, K. 2020. The Alzheimer's Disease Amyloid-beta hypothesis in cardiovascular aging and disease: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 952-967.
40 Wang, H., Chen, F., Du, Y. F., Long, Y., Reed, M. N., Hu, M., Suppiramaniam, V., Hong, H. and Tang, S. S. 2018. Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology 131, 143-153.   DOI
41 Wang, R. T., Jin, D., Li, Y. and Liang, Q. C. 2013. Decreased mean platelet volume and platelet distribution width are associated with mild cognitive impairment and Alzheimer's disease. J. Psychiatr. Res. 47, 644-649.   DOI
42 Weller, J. and Budson, A. 2018. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 7, 1161.   DOI
43 Jack, C. R. Jr, Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M. and Sperling, R. 2018. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 14, 535-562.   DOI
44 Wolk, D. A., Grachev, I. D., Buckley, C., Kazi, H., Grady, M. S., Trojanowski, J. Q., Hamilton, R. H., Sherwin, P., McLain, R. and Arnold, S. E. 2011. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch. Neurol. 68, 1398-1403.   DOI
45 Abdullah, L., Luis, C., Paris, D., Mouzon, B., Ait-Ghezala, G., Keegan, A. P., Wang, D., Crawford, F. and Mullan, M. 2009. Serum Abeta levels as predictors of conversion to mild cognitive impairment/Alzheimer disease in an ADAPT sub-cohort. Mol. Med. 15, 432-437.   DOI
46 Attems, J., Lintner, F. and Jellinger, K. A. 2004. Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol. 107, 283-291.   DOI
47 Bermejo-Bescos, P., Martin-Aragon, S., Jimenez-Aliaga, K., Benedi, J., Felici, E., Gil, P., Ribera, J. M. and Villar, A. M. 2013. Processing of the platelet amyloid precursor protein in the mild cognitive impairment (MCI). Neurochem. Res. 38, 1415-1423.   DOI
48 Biino, G., Gasparini, P., D'Adamo, P., Ciullo, M., Nutile, T., Toniolo, D., Sala, C., Minelli, C., Gogele, M. and Balduini, C, L. 2012. Influence of age, sex and ethnicity on platelet count in five Italian geographic isolates: mild thrombocytopenia may be physiological. Br. J. Haematol. 157, 384-387.   DOI
49 Hampel, H., O'Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S., Kiddle, S. J., Batrla, R. and Blennow, K. 2018. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat. Rev. Neurol. 14, 639-652.   DOI
50 Inyushin, M. Y., Sanabria, P., Rojas, L., Kucheryavykh, Y. and Kucheryavykh, L. 2017. Aβ peptide originated from platelets promises new strategy in anti-Alzheimer's drug development. Biomed. Res. Int. 2017, 3948360.
51 Kelley, M., Ulin, B. and McGuire, L. C. 2018. Reducing the risk of Alzheimer's disease and maintaining brain health in an aging society. Public Health Rep. 133, 225-229.   DOI
52 Li, R., Hoffmeister, K. M. and Falet, H. 2016. Glycans and the platelet life cycle. Platelets 27, 505-511.   DOI
53 Kim, H. J., Park, K. W., Kim, T. E., Im, J. Y., Shin, H. S., Kim, S., Lee, D. H., Ye, B. S., Kim, J. H., Kim, E. J., Park, K. H., Han, H. J., Jeong, J. H., Choi, S. H. and Park, S. A. 2015. Elevation of the plasma Aβ40/Aβ42 ratio as a diagnostic marker of sporadic early-onset Alzheimer's disease. J. Alzheimers Dis. 48, 1043-1050.   DOI
54 Koc, E. R., Uzar, E., Cirak, Y., Parlak Demir, Y. and Ilhan, A. 2014. The increase of mean platelet volume in patients with Alzheimer disease. Turk. J. Med. Sci. 44, 1060-1066.   DOI
55 Korniluk, A., Koper-Lenkiewicz, O. M., Kaminska, J., Kemona, H. and Dymicka-Piekarska, V. 2019. Mean Platelet Volume (MPV): New perspectives for an old marker in the course and prognosis of inflammatory conditions. Mediators Inflamm. 2019, 9213074.   DOI
56 Koyama, A., Okereke, O. I., Yang, T., Blacker, D., Selkoe, D. J. and Grodstein, F. 2012. Plasma amyloid-β as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch. Neurol. 69, 824-831.
57 Kukull, W. A. and Bowen, J. D. 2002. Dementia epidemiology. Med. Clin. North Am. 86, 573-590.   DOI
58 Lambert, J. C., Schraen-Maschke, S., Richard, F., Fievet, N., Rouaud, O., Berr, C., Dartigues, J. F., Tzourio, C., Alperovitch, A., Buee, L. and Amouyel, P. 2009. Association of plasma amyloid beta with risk of dementia: the prospective Three-City Study. Neurology 73, 847-853.   DOI
59 Lewczuk, P. and Kornhuber, J. 2016. Do we still need positron emission tomography for early Alzheimer's disease diagnosis? Brain 139, e60.   DOI
60 Li, Q. X., Whyte, S., Tanner, J. E., Evin, G., Beyreuther, K. and Masters, C. L. 1998. Secretion of Alzheimer's disease Abeta amyloid peptide by activated human platelets. Lab. Invest. 78, 461-469.
61 Liang, Q. C., Jin, D., Li, Y. and Wang, R. T. 2014. Mean platelet volume and platelet distribution width in vascular dementia and Alzheimer's disease. Platelets 25, 433-438.   DOI
62 Liu, W. W., Todd, S., Coulson, D. T., Irvine, G. B., Passmore, A. P., McGuinness, B., McConville, M., Craig, D. and Johnston, J. A. 2009. A novel reciprocal and biphasic relationship between membrane cholesterol and beta-secretase activity in SH-SY5Y cells and in human platelets. J. Neurochem. 108, 341-249.   DOI
63 Liu, W. W., Todd, S., Craig, D., Passmore, A. P., Coulson, D. T., Murphy, S., Irvine, G. B. and Johnston, J. A. 2007. Elevated platelet beta-secretase activity in mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 24, 464-468.   DOI
64 DeKosky, S. T. and Marek, K. 2003. Looking backward to move forward: early detection of neurodegenerative disorders. Science 302, 830-834.   DOI
65 Davies, T. A., Long, H. J., Sgro, K., Rathbun, W. H., Mc Menamin, M. E., Seetoo, K., Tibbles, H., Billingslea, A. M., Fine, R. E., Fishman, J. B., Levesque, C. A., Smith, S. J., Wells, J. M. and Simons, E. R. 1997. Activated Alzheimer disease platelets retain more beta amyloid precursor protein. Neurobiol. Aging 18, 147-153.   DOI
66 Deane, R., Bell, R. D., Sagare, A. and Zlokovic, B. V. 2009. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol. Disord. Drug Targets 8, 16-30.   DOI
67 Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., Zhu, H., Ghiso, J., Frangione, B., Stern, A., Schmidt, A. M., Armstrong, D. L., Arnold, B., Liliensiek, B., Nawroth, P., Hofman, F., Kindy, M., Stern, D. and Zlokovic, B. 2003. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907-913.   DOI
68 DeMattos, R. B., Bales, K. R., Parsadanian, M., O'Dell, M. A., Foss, E. M., Paul, S. M. and Holtzman, D. M. 2002. Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer's disease. J. Neurochem. 81, 229-236.   DOI
69 Do, T. M., Dodacki, A., Alata, W., Calon, F., Nicolic, S., Scherrmann, J. M., Farinotti, R. and Bourasset, F. 2016. Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of amyloid-β peptide in a mouse model of Alzheimer's disease (3xTg-AD). J. Alzheimers Dis. 49, 287-300.
70 Dong, X., Nao, J., Shi, J. and Zheng, D. 2019. Predictive value of routine peripheral blood biomarkers in Alzheimer's disease. Front. Aging Neurosci. 11, 332.   DOI
71 Van Nostrand, W. E., Schmaier, A. H., Farrow, J. S. and Cunningham, D. D. 1990. Protease nexin-II (amyloid beta-protein precursor): a platelet alpha-granule protein. Science 248, 745-748.   DOI
72 Seppala, T. T., Nerg, O., Koivisto, A. M., Rummukainen, J., Puli, L., Zetterberg, H., Pyykko, O. T., Helisalmi, S., Alafuzoff, I., Hiltunen, M., Jaaskelainen, J. E., Rinne, J., Soininen, H., Leinonen, V. and Herukka, S. K. 2012. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78, 1568-1575.   DOI
73 Stevens, R. F. and Alexander, M. K. 1977. A sex difference in the platelet count. Br. J. Haematol. 37, 295-300.   DOI
74 Tang, K., Hynan, L. S., Baskin, F. and Rosenberg, R. N. 2006. Platelet amyloid precursor protein processing: a bio-marker for Alzheimer's disease. J. Neurol. Sci. 240, 53-58.   DOI