• Title/Summary/Keyword: 배합강도

Search Result 1,247, Processing Time 0.032 seconds

Development of hydro-mechanical-damage coupled model for low to intermediate radioactive waste disposal concrete silos (방사성폐기물 처분 사일로의 손상연동 수리-역학 복합거동 해석모델 개발)

  • Ji-Won Kim;Chang-Ho Hong;Jin-Seop Kim;Sinhang Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.191-208
    • /
    • 2024
  • In this study, a hydro-mechanical-damage coupled analysis model was developed to evaluate the structural safety of radioactive waste disposal structures. The Mazars damage model, widely used to model the fracture behavior of brittle materials such as rocks or concrete, was coupled with conventional hydro-mechanical analysis and the developed model was verified via theoretical solutions from literature. To derive the numerical input values for damage-coupled analysis, uniaxial compressive strength and Brazilian tensile strength tests were performed on concrete samples made using the mix ratio of the disposal concrete silo cured under dry and saturated conditions. The input factors derived from the laboratory-scale experiments were applied to a two-dimensional finite element model of the concrete silos at the Wolseong Nuclear Environmental Management Center in Gyeongju and numerical analysis was conducted to analyze the effects of damage consideration, analysis technique, and waste loading conditions. The hydro-mechanical-damage coupled model developed in this study will be applied to the long-term behavior and stability analysis of deep geological repositories for high-level radioactive waste disposal.

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0$\times$$10^{7}$cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

Effects of Nutrient Levels and Feeding Regimen of a.m. and p.m. Diets on Laying Hen Performances and Feed Cost (산란계에 대한 오전용 사료와 오후용 사료의 영양수준 및 급여방법이 산란능력과 사료비에 미치는 영향)

  • 이규호;오용석
    • Korean Journal of Poultry Science
    • /
    • v.29 no.3
    • /
    • pp.195-204
    • /
    • 2002
  • Two experiments were conducted to study the effects of nutrient level and feeding method of split diets for a.m. and p.m. on laying hen performance, feed cost and eggshell quality. In experiment 1, 384 ISA Brown layers of 30∼38wk of age were assigned to four treatments which comprise of three replicates each containing 32 birds. The control(C) was fed a conventional single diet throughout the day and split diet groups(T1, T2 and T3) were offered high energy/protein-low Ca diets, and low energy/protein-high Ca diets in a.m.(04:00∼15:00) and p.m.(15:00∼21:00), respectively. In the split diet groups, daily ME and CP consumption, and feed cost were significantly reduced(P<0.05) compared to the C, while the hen-day egg production, average egg weight and daily feed intake were not different among treatments. Due to the reduced daily ME and CP intakes and feed cost, the conversions of feed, ME, CP and feed cost required per day and per kg egg mass were also significantly improved(P<0.05) in the split diet groups. Eggshell qualities (egg specific gravity, egg breaking strength and eggshell thickness) were improved(P<0.05) by split diet feeding. As the Ca level of the p.m. diet increased. In Experiment 2, 384 ISA Brown layers of 50∼58 wk of age were used in three treatments and each treatment was represented by four replicates each containing 32 birds. The control(C) was fed a conventional single diet throughout the day and split diet group(T1) was offered high energy/protein-low Ca diets, and low energy/protein-high Ca diets in a.m.(04:00∼l5:00) and p.m.(15:00∼21:00), respectively. T2 group was fed the diet mixed (50:50) with the a.m. diets in mash and p.m. diet in pellet used T1 group. In T1 and T2 groups, daily feed intake and average egg weight were significantly reduced(P<0.05) compared to the C, while the hen-day egg production was not influenced by the feeding system. Daily ME and CP consumption, and feed cost were reduced(p.0.05), and the conversions of ME, CP and feed cost required per egg were also significantly improved(P<0.05) in T1 and T2, while the conversions of feed, ME, CP and feed cost required per kg egg mass were not different to the C. Eggshell qualities of T1 and T2 were improved(P<0.05) compared to the others. It was concluded the feed and nutrients consumption, feed cost per day or per kg egg mass could be reduced by introducing split diets for a.m. and p.m. and the feeding method of mixed diet of split diets were also convenient and effective for sparing feed cost and improvement of eggshell quality.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.

Blend Characteristics of PBT, Nylon6,12 and Preparation of PBT/Nylon6,12 Micro Fiber with Core/shell Structure and their Extrusion Conditions (PBT와 Nylon6,12의 블렌드 특성과 core/shell 구조를 갖는 PBT/Nylon6,12 미세모의 제조 및 압출조건)

  • Park, Hui-Man;Lee, Seon-Ho;Kwak, Noh-Seok;Hwang, Chi Won;Park, Sung-Gyu;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1068-1075
    • /
    • 2012
  • Poly(butylene terephthalate) (PBT)/Nylon6,12 core/shell micro fiber were prepared by extrusion molding. To investigate their optimum extrusion conditions, compatibility of PBT/Nylon6,12 blend micro fiber in conformity to their weight ratio and manufacture temperature was explored with SEM morphology and DSC. The alterations in their mechanical properties by extrusion speed were compared and analyzed through a UTM. In comparison with SEM figures, the domain sizes of Nylon6,12 were gradually declined by increasing the extrusion temperature of blends. Furthermore, according to these SEM images, the phase separation between Nylon6,12 domain and PBT matrix became indistinct with increasing of weight percentage of Nylon6,12. In case of DSC, the boundaries of two peaks were almost disappeared when increasing the extrusion temperature and also intervals of each two melting peaks became narrow as increasing the Nylon6,12 ratio. The mechanical properties including tensile strength, elongation, flexural strength and flexural modulus were increased as the increase in the extrusion temperature until $260^{\circ}C$. However, the mechanical properties were actually deteriorated over $260^{\circ}C$. The tensile strength, elongation, flexural strength and flexural modulus at $260^{\circ}C$ were 560 $kg_f/cm^2$, 220%, 807 $kg_f/cm^2$ and 22,146 $kg_f/cm^2$, respectively. These values are more than intermediate values of mechanical properties of PBT and Nylon6,12. These results mean that there is compatibility between PBT and Nylon6,12. Based on the extrusion conditions that produced optimum compatibility of blend, as a result, our group obtained micro fibers with the core/shell structure.

Engineering Characteristics of Wet-mixing Solidified Soil in Pavement Surfacing (습식 경화교반토 포장의 공학적 특성)

  • Yoo, Ji-Hyeung;Shu, Dong-Hyuk;Lee, Seong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.1-7
    • /
    • 2004
  • Roads, like bikeways, parkways and walks, are to be just capable of supporting light traffic and traveling public, but they are required to be human friendly and environmental-oriented. Lately soil-solidifier mixture, a kind of soil-cement, has developed and has been applied to the recycling and environment-oriented pavement as the surfacing material. Soil-solidifier pavement structure has been designed by only experience. To design this pavement mechanically, it is necessary to find out basic engineering properties of soil-solidifier mixture. This study focuses on finding out mechanical characteristics of the mixture according to mixture proportions and aging. Test molds with various mixture proportions are made, and then unconfined strength tests are performed for test molds with aging of the mixture. As the result of this study, it is found that the strength of the mixture increases with amount of cement and that maximum strength is achieved at 6%$\sim$8% of the ratio of solidifier and water. The strength increase rapidly until 14 days, after then slowly. After 28 days the strength of the mixture approaches to the constant value. The heat of hydration during curing of the mixture is measured no significantly. It also shows that temperature characteristics of the mixture is similar to that of soil. Since this mixture is mixed with soil and is able to improve engineering problems in pavement due to temperature, this mixture is expected to use effectively in the environment-oriented pavement for light traffic.

  • PDF

Automatic Detection of Stage 1 Sleep (자동 분석을 이용한 1단계 수면탐지)

  • 신홍범;한종희;정도언;박광석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.11-19
    • /
    • 2004
  • Stage 1 sleep provides important information regarding interpretation of nocturnal polysomnography, particularly sleep onset. It is a short transition period from wakeful consciousness to sleep. Lack of prominent sleep events characterizing stage 1 sleep is a major obstacle in automatic sleep stage scoring. In this study, we attempted to utilize simultaneous EEC and EOG processing and analyses to detect stage 1 sleep automatically. Relative powers of the alpha waves and the theta waves were calculated from spectral estimation. Either the relative power of alpha waves less than 50% or the relative power of theta waves more than 23% was regarded as stage 1 sleep. SEM (slow eye movement) was defined as the duration of both eye movement ranging from 1.5 to 4 seconds and regarded also as stage 1 sleep. If one of these three criteria was met, the epoch was regarded as stage 1 sleep. Results f ere compared to the manual rating results done by two polysomnography experts. Total of 169 epochs was analyzed. Agreement rate for stage 1 sleep between automatic detection and manual scoring was 79.3% and Cohen's Kappa was 0.586 (p<0.01). A significant portion (32%) of automatically detected stage 1 sleep included SEM. Generally, digitally-scored sleep s1aging shows the accuracy up to 70%. Considering potential difficulties in stage 1 sleep scoring, the accuracy of 79.3% in this study seems to be robust enough. Simultaneous analysis of EOG provides differential value to the present study from previous oneswhich mainly depended on EEG analysis. The issue of close relationship between SEM and stage 1 sleep raised by Kinnariet at. remains to be a valid one in this study.

Growth and morphological characteristics of Polygonatum species indigenous to Korea (한국산 둥굴레속(Polygonatum) 수집종의 생육 및 형태적 특성)

  • Yun, Jong-Sun;Son, Suk-Yeong;Hong, Eui-Yon;Kim, Ik-Hwan;Yun, Tae;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.164-171
    • /
    • 2002
  • Morphological characteristics and growth pattern of 10 Polygonatum collections indigenous to Korea were examined to select the promising medicinal, edible resources and horticultural crops. Plant heights of I0 collections ranged from 15 to 102cm. Stem type was ascending or erect, and node numbers per a stem was 6.2 to 23.2. Phyllotaxis type was alternate or verticillate, and leaf shape was elliptical or linear. Leave numbers per a stem was 5.2 to 63.4, and bract types were classified into bracteate and nonbracteate. Flowers bloomed from May 7 to May 30, and flowering period was 5 to 13 days. Inflorescence types were classified into racemose, corymbose, and umbellate. Flower numbers per a stem was 1.5 to 125.2, and flower length was 13.1 to 30.2㎜. Perianth shapes were classified into tubular, constrict and urceolate. Surface colors of rhizome were pale yellow, pale brown, brown, and dark brown. As a result of this experiment, P. sibiricum, P. odoratum var. pluriflorum and P. odoratum var. thunbergii were thought to be useful as the medicinal and edible resources plants. On the other hand, P. odoratum var. pluriflorum 'Variegata', and P. odoratum var. maximowiczii, P. lasianthum. P. involucratum, P. desoulavyi, P. humile, and P. inflatum were thought to be useful as horticultural plants.

Experimental studies on the characteristics of the mortar using dispersing agent of cement and high fluid admxiture (시멘트 분산제(分産劑) 및 고류동화제(高流動化劑)를 사용(使用)한 모르터의 제(諸) 성질(性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Seong Wan;Park, In-Gyu
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.146-159
    • /
    • 1984
  • This study was the contrast of the compressive strength, the tensile strength, the reducing ratio and the flow of mortar using dispersing agent and high fluid admix. 1. The admix ratio of chemical admixtures espressing maximum strength appeared the same result high fluid admix SP was 0.6%, the dispersing agents LG and C211 were 0.2%, SK was 0.3%, C376 was 0.5%. But two or three times more than standard quantity made the strength's fast lowness, which influenced bad to wateriness and retard the soli-dification. 2. When proper quantity of chemical admixture was used, the increment of compressive strength was as follows. High fluid admix SP was 40.7% and the average increasing rate of dispersing agents(C211 was 19.5%, LG was 19.1%, C376 was 17.9%) was 18.7% more than normal mortar in the codition of 7 days. Also, in the condition of 28 days, high fluid admix SP was about 24.4% and the average of dispersing agents(LG was 21.1%, C211 was 16.4%, SK was 11.1%, C376 was 7.6%) was 14.1%. 3. When proper quantity of chemical admixture was used, the increment of tensile strength was as follows. High fluid admixture SP was 26.6% and the average increasing agents(SK was 16.0%, C376 was 14.7%, LG was 10%, C211 was 5.8%) was 11.6%. Also, in the condition of 28 days, high fluid admix SP was 16.5% and the average increasing rate of dispersing agents(LG was 19.1%, SK was 10.6%, C211 was 10.1%, C376 was 8.7%) was 12.1%. 4. As for the reducing ratio of each dispersing agent, he flow of mortar was less than the slump of concrete. That is; the reducing ratio of concrete was 15% adding each dispersing agent, but the reducing ratio of mortar was in the range of from 5.8% to 13.5% in 1 : 1 mixture, from 7.6% to 14.2% in 1 : 2, from 9.5% to 18.8% in 1 : 3. 5. The fluidity of each chemical admixture was as follows. High fluid admix SP in the condition of 1: 1 and 1 : 2 showed the best result than other dispersing agent and 1 : 3 showed the same result like other agents. Therefore these good dispersing agents were suitable in the prepact concrete construction using intrusion mortar.

  • PDF

Quality Improvement of High Volume Fly Ash Concrete due to Early Strength Gain Admixture (조강형 혼화제에 의한 플라이애시 다량 치환 콘크리트의 품질 향상)

  • Han, Cheon-Goo;Park, Jong-Ho;Lee, Joung-Ah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 2009
  • The purpose of the study was to improve quality of high volume fly ash concrete. The study evaluated on the possibility of early quality improvement of high volume fly ash concrete with early strength gain admixture ('GA' below) developed by the preceding research. The study regarded applying naphthalene admixture ('NA' below) to mix proportion substituting FA 15 % to be plain. In the event of substituting FA 20, 25 and 30 %, the study compared engineering properties of concrete with plain by applying GA. Because of features of fresh concrete, fluidity falls down when GA is applied. Therefore, its use amount shall be increased. Only, in W/B 60 %, it was beneficial since slump loss was reduced about 35~70 mm than plain. The study could see that AE use should be increased proportionally since air content was reduced by coming from AE absorption operation of unburned coal content included in FA according to an increase in the amount of FA use. Reduction effect of bleeding could be anticipated since the amount of bleeding appeared at least in FA 20 %. Because of hardened concrete, time of setting appeared in the same level as plain when GA was applied. Therefore, it is judged that delay of setting can be reduced. In compressive strength, the study could check the same strength development as plain when GA was applied, having nothing to do with W/B and curing temperature. However, it is thought that we shall pay attention to GA use in the event of FA 30 % substitution. Freezing and melting resistance had less early value than plain. However, it is judged that there will be no problem of frost resistance since there is no a large difference between freezing and melting resistance and plain in overall. In accelerated neutralization, it was analyzed that a problem of weakening in neutralization appointed as a demerit when FA was applied in mass in proportion with GA use could be settled to some extent.

  • PDF