DOI QR코드

DOI QR Code

Development of hydro-mechanical-damage coupled model for low to intermediate radioactive waste disposal concrete silos

방사성폐기물 처분 사일로의 손상연동 수리-역학 복합거동 해석모델 개발

  • Ji-Won Kim (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Chang-Ho Hong (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Jin-Seop Kim (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Sinhang Kang (Dept. of Civil and Environment Engineering, Hannam University)
  • 김지원 (한국원자력연구원 저장처분실증연구부) ;
  • 홍창호 (한국원자력연구원 저장처분실증연구부) ;
  • 김진섭 (한국원자력연구원 저장처분실증연구부) ;
  • 강신항 (한남대학교 토목환경공학전공)
  • Received : 2024.03.04
  • Accepted : 2024.04.26
  • Published : 2024.05.31

Abstract

In this study, a hydro-mechanical-damage coupled analysis model was developed to evaluate the structural safety of radioactive waste disposal structures. The Mazars damage model, widely used to model the fracture behavior of brittle materials such as rocks or concrete, was coupled with conventional hydro-mechanical analysis and the developed model was verified via theoretical solutions from literature. To derive the numerical input values for damage-coupled analysis, uniaxial compressive strength and Brazilian tensile strength tests were performed on concrete samples made using the mix ratio of the disposal concrete silo cured under dry and saturated conditions. The input factors derived from the laboratory-scale experiments were applied to a two-dimensional finite element model of the concrete silos at the Wolseong Nuclear Environmental Management Center in Gyeongju and numerical analysis was conducted to analyze the effects of damage consideration, analysis technique, and waste loading conditions. The hydro-mechanical-damage coupled model developed in this study will be applied to the long-term behavior and stability analysis of deep geological repositories for high-level radioactive waste disposal.

본 연구에서는 방사성폐기물 처분구조물의 안전성 및 건전성 평가를 위해 손상연동 수리-역학 복합 거동 해석 모델을 개발하였다. 콘크리트나 암반과 같은 취성재료의 파괴 모사에 널리 사용되는 Mazars 손상 모델을 선정하여 수리-역학 해석에 연동하였고, 예제 및 정해를 기반으로 개발된 해석 모델을 검증하였다. 개발된 해석 모델의 손상 입력 인자를 도출하기 위해 처분구조물 콘크리트 배합비로 제작한 시료를 대상으로 건조/포화 양생 조건에서 일축압축강도 및 간접인장강도 시험을 수행하였다. 실내 시험을 통해 도출한 입력 인자는 경주 월성 원자력 환경관리센터의 동굴처분 콘크리트 사일로를 모사한 2차원 유한요소해석에 적용하여 손상 고려 유무, 해석 기법 및 폐기물 하중 재하 조건에 따른 영향을 분석하였다. 연구를 통해 개발된 수리-역학-손상 모델은 향후 고준위 방사성폐기물 처분을 위한 심층처분장의 장기 거동 및 안정성 해석에 적용할 계획이다.

Keywords

Acknowledgement

본 연구는 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(NRF-2021M2E1A1085193, NRF-2022M2E3A3015608)으로 수행되었습니다. 이에 감사드립니다.

References

  1. ASTM (2014), Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures, ASTM D7012-14.
  2. COMSOL Multiphysics (1998), Introduction to COMSOL multiphysics®, COMSOL Multiphysics, Burlington, MA.
  3. da Silva, M.P., Mota, M.T., Gadéa, A.D.S.M., Leite, M.B., de Jesus Nagahama, K. (2015), "The behavior of recycled concrete through the application of an isotropic damage model", Open Journal of Civil Engineering, Vol. 5, No. 3, pp. 339.
  4. IAEA (2009), Classification of radioactive waste, General Safety Guide No. GSG-1, Vienna.
  5. Idiart, A., Lavina, M., Coene, E. (2019), Modelling of concrete degradation-Hydro-chemo-mechanical processes, SKB Report R-19-12, pp. 41.
  6. Jianhong, Y., Wu, F.Q., Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 3, pp. 568-576.
  7. Jirasek, M. (2004), "Non-local damage mechanics with application to concrete", Revue Francaise de Genie Civil, Vol. 8, No. 5-6, pp. 683-707.
  8. Kachanov, L.M. (1958), "Time of rupture process under creep conditions", Izvestiya Akademii Nauk SSSR Otdelenie Tekniches, No. 8, pp. 26-31.
  9. KATS (2021), Standard test method for tensile splitting strength of concrete, KS F 2423, KSSN.
  10. KATS (2022), Standard test method for compressive strength of concrete, KS F 2405, KSSN.
  11. Kim, J.S., Hong, C.H., Kim, G.Y. (2020), "Evaluation of Mazars damage model of KURT granite under simulated coupled environment of geological disposal", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 4, pp. 419-434.
  12. KORAD Home page, https://www.korad.or.kr/korad/html.do?menu_idx=157 (Feburary 23, 2024).
  13. Kwon, K.J., Jung, H., Park, J.W. (2016), "A study on corrosion properties of reinforced concrete structures in subsurface environment", The Journal of Engineering Geology, Vol. 26, No. 1, pp. 79-85.
  14. Lee, J., Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", Journal of Engineering Mechanics, Vol. 124, No. 8, pp. 892-900.
  15. Lee, J., Kim, K.I., Min, K.B., Rutqvist, J. (2019), "TOUGH-UDEC: A simulator for coupled multiphase fluid flows, heat transfers and discontinuous deformations in fractured porous media", Computers & Geosciences, Vol. 126, pp. 120-130.
  16. Lee, K.H., Bang, J.H., Kim, J.H., Kim, S.H., Lee, I.M. (2009), "Brittle rock property and damage index assessment for predicting brittle failure in underground opening", Journal of Korean Tunnelling and Underground Space Association, Vol. 11, No. 4, pp. 327-351.
  17. Mazars, J. (1986), "A description of micro- and macroscale damage of concrete structures", Engineering Fracture Mechanics, Vol. 25, No. 5-6, pp. 729-737.
  18. Mazars, J., Grange, S. (2017), "Simplified strategies based on damage mechanics for concrete under dynamic loading", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 375, No. 2085, pp. 20160170.
  19. NSSC (2014), Guidelines for radioactive waste classification and self disposal standards, No. 2014-03.
  20. NSSC (2023), Enforcement decree of the nuclear safety act, Article 99 Criteria for Permits, Presidential Decree No. 33658, August 1, 2023.
  21. Park, B.K., Cho, K.H., Lee, I.M. (2004), " Numerical analysis of blast-induced anisotropic rock damage", Journal of Korean Tunnelling and Underground Space Association, Vol. 6, No. 4, pp. 291-302.
  22. Park, J.B., Jung, H.R., Lee, E.Y., Kim, C.L., Kim, G.Y., Kim, K.S., Koh, Y.K., Park, K.W., Cheong, J.H., Jeong, C.W., Choi, J.S., Kim, K.D. (2009), "Wolsong low-and intermediate-level radioactive waste disposal center: progress and challenges", Nuclear Engineering and Technology, Vol. 41, No. 4, pp. 477-492.
  23. Richards, L.A. (1931), "Capillary conduction of liquids through porous mediums", Physics, Vol. 1, No. 5, pp. 318-333.
  24. Seo, K.W., Kim, Y.J., Jung, S.H., Choi, K.Y. (2015), "Reinforced concrete silo construction project for low level radioactive waste disposal", Magazine of the Korea Concrete Institute, Vol. 27, No. 4, pp. 45-49.
  25. Simo, J.C., Ju, J.W. (1987), "Strain-and stress-based continuum damage models-I. Formulation", International Journal of Solids and Structures, Vol. 23, No. 7, pp. 821-840.
  26. Souissi, S., Miled, K, Hamdi, E., Sellami, H. (2017), "Numerical modeling of rock damage during indentation process with reference to hard rock drilling", International Journal of Geomechanics, Vol. 17, No. 7, 04017002.
  27. Terzaghi, V. (1923), "Die berechnug der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen", Sitzungsberichte der Akademie der Wissenschaften in Wien: Mathematisch-Naturwissenschaftliche Klasse, Abteilung IIa, Vol. 132, No. 3/4, pp. 125-138.
  28. van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, Vol. 44, No. 5, pp. 892-898.
  29. Zhu, W.C., Wei, C.H., Li, S., Wei, J., Zhang, M.S. (2013), "Numerical modeling on destress blasting in coal seam for enhancing gas drainage", International Journal of Rock Mechanics and Mining Sciences, Vol. 59, pp. 179-190.