• Title/Summary/Keyword: 방향성 주파수 응답함수

Search Result 18, Processing Time 0.036 seconds

The Effect of Input Noise for Directional Frequency Response Functions (방향성 주파수 응답함수에서 입력 잡음의 영향)

  • Kang, Sung-Woo;Seo, Yun-Ho;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.735-741
    • /
    • 2008
  • Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be a powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an input noise effect of dFRFs for rotors is estimated, when both asymmetry and anisotropy are present. The normalized random errors of the dFRFs are calculated to verify the validity of the method, which is demonstrated by numerical simulation with a simple rotor model.

  • PDF

Identification of Asymmetry in General Rotors from Directional Frequency Response Functions (방향성 주파수 응답 함수를 이용한 일반 회전체의 비대칭성 규명)

  • Seo, Yun-Ho;Kang, Sung-Woo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.941-944
    • /
    • 2005
  • Asymmetry of rotor systems is an important factor for identification of dynamic characteristics including the stability and response of rotors and for condition monitoring. In this work, asymmetry of rotors is identified by applying curve-fitting method to the directional frequency response functions (dFRFs), which are known as a powerful tool for detecting the presence and degree of asymmetry. This method minimizes least square error between analytical and measured dFRFs by iteratively updating physical parameters associated with rotor asymmetry. The effectiveness of the identification method is demonstrated by experiments with a laboratory test rotor.

  • PDF

Identification of Diametrical Node Number of Travelling Wave Modes is Rotating Disk-Use of Directional Frequency Response Function (회전원판의 진행파 모드 절직경 수 규명-방향성 주파수응답함수의 이용)

  • Kim, Myeong-Eop;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.960-967
    • /
    • 1996
  • Directional frequency response functions(dFRFs) are introduced for isotropic rotating disks, treating pairs of excitations and measurements as the complex input and output, respectively. It is shown that the dFRFs can be effectively used for separation of the forward and backward travelling wave modes and identification of the diametrical node numbers associated with modes of interst. Numerical simuations and experimental works are performed to demonstrate the analytical development and its validity.

Estimation of Directional Frequency Response Functions for Asymmetric Rotor with Anisotropic Stators (비대칭성과 비등방성이 공존하는 회전체에서의 방향성 주파수 응답 함수 추정)

  • 서윤호;강성우;서정환;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.681-686
    • /
    • 2004
  • Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an estimation method of dFRFs for rotors is newly developed, when both asymmetry and anisotropy are present. The method transforms the finite degrees-of-freedom time-varying linear differential equation of motion to an infinite degree-of-freedom time-invariant linear one, employing the modulated coordinates. The validity of the method is demonstrated by numerical simulation with a simple rotor model.

  • PDF

A study on the simplification of HRTF within low frequency region (저역 주파수 영역에서 HRTF의 간략화에 관한 연구)

  • Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.581-587
    • /
    • 2010
  • In this study, we investigated the effect of the simplification for low frequency region in Head-Related Transfer Function(HRTF) on the sound localization. For this purpose, HRTF was measured and analyzed. The result in the standard deviation of HRTF showed that the directional dependence of low frequency was smaller than that of high frequency region, which means the possibility of simplification in the low frequency region. Simplification was performed by flattening of the low frequency amplitude characteristics with the insertion of the high-pass filter, whose cutoff frequency is given by boundary frequency. Auditory experiments were performed to evaluate the simplified HRTF. The result showed that direction perception was not influenced by the simplification of the frequency characteristics of HRTF for the error of sound localization. The rate of confusion for the front and back was not affected by the simplification of the frequency characteristics within 1kHz of HRTF. Finally, we made it clear that the sound localization was not affected by the simplification of frequency characteristics of HRTF within 1kHz. The result is expected to be utilized to reduce the size of speech information with no deterioration of the directional characteristics of the speech signal.

Modal Analysis of Rotor System with Anisotropic Stator and Asymmetric Rotor in the Presence of Breathing Crack (개폐균열이 존재하는 비대칭 회전부 및 비등방 고정부를 갖는 회전체의 모드해석)

  • Han Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.442-450
    • /
    • 2006
  • This paper describes the new modal analysis method to detect the presence of the breathing crack in a general rotor system with disk asymmetry and stator anisotropy. It is proposed that the modal analysis using directional frequency response functions (dFRFs), which, accounting for the directivity in modes, clears the heavily over-lapping of other harmonics occurring from non-isotropic properties in addition to those due to crack, can provide an effective method to detect the modes by a crack. The simulations from the simple general rotor model show that the r-dFRFs (reverse dFRFs) for asymmetry confirms a good indicator of the presence of the breathing crack and the instability is primarily influenced by the shaft asymmetry than the breathing crack.

A Study on the Vibration Characteristics of the Eccentrically Stiffened Plate Attached an Orthogonal Stiffener at Arbitrary Angle (직교 보강재가 임의의 각도로 부착된 편면 보강평판의 진동 특성에 관한 연구)

  • 정병환;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.172-178
    • /
    • 1995
  • 보강평판은 평판에 각종 보강재를 용접등의 방법에 의해서 종방향, 횡방향, 경사 또는 임의의 방향으로 부착시켜 굽힘 및 비틀림 강성을 향상시킨 구조요소이다. 이러한 구조요소는 구조적 필요성이나 경량화 설계에 따라 선박의 deck, 철도 차량, 항공기 및 자동차 등의 각종 구조물에서 부하능력 및 경제성을 증대시키기 위하여 널리 사용되고 있고, 또한 자동차용 오일팬, 가전기기의 케이싱과 모터의 케이싱등에도 사용되고 있다. 최근 현장에서는 이러한 구조물의 진동 감소 및 방진 문제가 큰 관심사가 되고 있다. 본 논문은 정사각형 알루미늄 평판에 +자 형태의 Box Beam 보강재를 편면 보강하고 4변 자유단의 경계 조건을 설정하였다. 보강재는 유한요소 정식화 과정을 통하여 평판 요소에 등가시키고, 2차원의 평판 구조로 보강 평판을 모델링하고 구조해석 프로그램인 ANSYS를 이용하여 해석하였다. 실험은 Impact Test에 의해서 주파수 응답 함수(FRF)를 각 시편에 대해서 구하고 이를 해석의 고유진동수와 비교하였다. 그리고 보강재가 임의의 각도로 평판에 부착되었을 때 고유진동수의 변화와 진동 모드(mode shape)를 분석하였다.

  • PDF

The Enhancement of the Acoustic Image by Combining Bases of Support for SFR (Spatial Frequency Response) (공간주파수응답의 기저대역 확장에 의한 초음파영상의 개선)

  • Song, Dae-Geon;Oh, Tong-In;Kim, Hyun;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.408-417
    • /
    • 2003
  • In this paper, we have studied the enhancement of the acoustic image by combining bases of support for SFR (Spatial Frequency Response) taken at multi-frequencies. The scanning acoustic microscope system have been constructed using the quadrature detector that is able to measure the amplitude and phase of the reflected signal simultaneously. Both real and quadrature components of reflected signal have been acquired at 4.4 ㎒ to 5.6 ㎒ reliably and accurately. In this experimental result, better depth resolution can be obtained by numerically combining images taken at several different frequencies. Image intensity have been better about 3.4 times at multi-frequency than one at a single frequency.

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

Dynamic Analysis of Floating Bridge Subject to Earthquake Load Considering Multi-Support Excitation (다중지점 가진 효과를 고려한 부유식 교량의 지진응답 해석)

  • 권장섭;백인열;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • Dynamic response analysis is conducted for a floating bridge subjected to multiple support earthquake excitation. The floating bridge used in this study is supported by discrete floating pontoons and horizontal pretension cables supported at both ends of the bridge. The bridge is modeled with finite elements and the hydrodynamic added mass and added damping due to the surrounding fluid around pontoons are obtained using boundary elements. During the analysis the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients. Multiple support excitation is introduced at both ends of the bridge and the time history response is compared to that of a simultaneous excitation. The results show that the multiple support excitation yields larger values in some responses. for example in cable tensions. than the sumultaneous excitation.