• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.029 seconds

The study of optimal reduced-graphene oxide line patterning by using femtosecond laser pulse (펨토초 레이저 펄스를 이용한 환원된 그래핀의 최소 선폭 패턴 구현에 관한 연구)

  • Jeong, Tae-In;Kim, Seung-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.157-162
    • /
    • 2020
  • In recent years, laser induced graphene process have been intensively studied for eco-friendly electronic device such as flexible electronics or thin film based energy storage devices because of its simple and effective process. In order to increase the performance and efficiency of an electronic device using such a graphene patterned structure, it is essential to study an optimized laser patterning condition as small as possible linewidth while maintaining the graphene-specific 2-dimensional characteristics. In this study, we analyzed to find the optimal line pattern by using a Ti:sapphire femtosecond laser based photo-thermal reduction process. we tuned intensity and scanning speed of laser spot for generating effective graphene characteristic and minimum thermal effect. As a result, we demonstrated the reduced graphene pattern of 30㎛ in linewidth by using a focused laser beam of 18㎛ in diameter.

Structural Optimization of Variable Swash Plate for Automotive Compressor Using Orthogonal Polynomials (직교다항식을 이용한 자동차 압축기용 가변 사판의 구조최적설계)

  • Baek, Seok-Heum;Kim, Hyun-Sung;Han, Dong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1273-1279
    • /
    • 2011
  • The variable-swash-plate compressor has recently been adopted as a vehicle compressor to improve fuel efficiency. The rotation torque in the variable-swash-plate compressor and the pressure-affected piston have a great influence on the swash-plate design and deformation. This paper suggests the optimal configuration design by using Chebyshev orthogonal polynomial and optimization techniques. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and response surface optimization, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in swash plate and explain the optimal solution, the usefulness for satisfying the constraints of maximum stress and deformation.

Control of Aeration Phase in SBR for Piggery Wastewater Treatment using FLC (퍼지제어기를 이용한 축산폐수처리를 위한 연속회분식 반응기(SBR)의 폭기제어)

  • Jeon, Byung-Hee;Bae, Hyun;Seo, Hyun-Yong;Woo, Hye-Jin;Kim, Chang-Won;Kim, Sung-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.275-278
    • /
    • 2003
  • 본 연구에서는 축산폐수공공처리장내에 설치된 Pilot-scale SBR(유효부피,20㎥)를 이용하여 sub-cycle의 폭기/무산소구간을 최적화하기 위하여 DO를 입력으로 하여 넓은 운전조건에서 적용될 수 있는 퍼지제어기를 개발하고, 또한 부하이상을 신속히 진단하여 유입부하량을 제어할 수 있는 퍼지 시스템 제어기를 개발하였다. DO값을 입력으로 한 퍼지제어기로서 안정성과 연속성에서 우수하였으나 시스템에 따라서 소속함수의 범위를 재조정해야 할 필요가 있다. DO미분값은 변화폭이 큰 지점을 검출함으로써 지연시간(lag time)의 DO값에 관계없이 적용할 수 있는 장점이 있다. 제어기의 적용성과 안정성을 높이기 위해서는 두 가지 제어인자를 동시에 고려할 필요가 있으며 퍼지 소속함수에 대한 입력으로서 DO값과 DO미분값을 적용하였다. 그 결과 폭기구간에서 매우 안정적이고 신속하게 폭기제어지점의 검출을 보여주고 있어 최적화된 제어가 가능함을 보여준다. 현장실험결과 지연시간에서의 DO가 높고 외란이 심한 경우에도 적용될 수 있음을 보여주었다.

  • PDF

Increased Alkaline Protease Production from Bacillus clausii I-52 by Experimental Design Methods (통계학적 방법을 이용한 Bacillus clausii I-52로부터 염기성 단백질 분해효소 생산 증진)

  • Lee Jae-woo;Kim Hyun-soo;Chang Chung-soon;Kim Eun-ki
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.215-219
    • /
    • 2005
  • Production of alkaline pretense by Bacillus clausii I-52 was optimized by experimental design methods. Among 7 medium components, three (wheat flour, sodium citrate, sodium carbonate) were selected as components affecting the pretense activity significantly by Plackett-Burman methods. Furthermore the ranges of effective concentrations were determined by Box-Behnken methods. The objective function describing the alkaline pretense production was obtained and optimum concentration of 3 components was determined by using response-surface methods (RSM). Theoretical maximum production was 74000 U/mL (Wheat flour: 0 g/L, Sodium citrate: 5 g/L, Sodium carbonate: 10 g/L). With the optimized medium composition, 92000 U/mL alkaline protease was produced experimentally, resulting in $90\%$ increase compared to before-optimization production (49000 U/mL).

An Approach to the Optimization of Catalyst-bed L/D Configuration in 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 촉매대 형상(L/D) 최적화 연구)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • A ground hot-firing test was conducted to take out the optimal design configurations for the catalyst bed of liquid-monopropellant hydrazine thruster which could be used for primary engine or attitude control thruster of space vehicles. Performance characteristics with the variation of thrust-chamber length are investigated in terms of thrust, specific impulse, chamber pressure, characteristic velocity, and hydrazine decomposition rate. Additionally, the correlations between propellant-supply pressure and performance parameters are given. As results, increase of catalyst-bed length leads to performance degradation in this test condition, and also decreases propellant consumption efficiency with the supply pressure variation.

Optimization of Emulsification and Spray Drying Process for the Microencapsulation of Flavor Compounds (향기성분 미세캡슐화를 위한 유화 및 분무건조 공정 최적화)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.132-139
    • /
    • 2000
  • This study was conducted to optimize the emulsion process and the spray drying process for the microencapsulation of flavor compounds. Using the wall system selected, emulsion process for microencapsulation was optimized on the change of the pressure of piston-type homogenizer. Emulsification pressure of 34.5 MPa was found to be the most suitable for preparing flavor emulsion. Effects of drying temperature and atomizer speed of the spray drier on total oil, surface oil, and flavor release of the flavor powder were investigated using response surface methodology. The optimum spray drying conditions for minimal surface oil and flavor release and maximum total oil were $170{\circ}C$ inlet temperature and 15,000 rpm atomizer speed. The spray-dried powder processed with the highest drying temperature showed spherically-shaped particles with smooth surface.

  • PDF

Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments (실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구)

  • Kim, Jintae;Kim, Minjin;Sohn, Youngjun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

Optimization of Ethanol Extraction Conditions from Propolis (a Bee Product) Using Response Surface Methodology (반응표면분석법을 이용한 프로폴리스의 에탄올 추출조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Lee, Kyung-Hee;Lee, Sang-Han;Lee, Dong-Sun;Cho, So-Mi K.;Hur, Sang-Sun;Kwon, Taeg-Kyu;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.908-914
    • /
    • 2009
  • A central composite design was used to optimize extraction of propolis materials using ethanol. The independent variables in extraction experiments were ethanol concentration (50, 60, 70, 80, 90%, v/v) and extraction time (1, 2, 3, 4, and 5 h). Higher ethanol concentration and shorter extraction time increased total polyphenol content, but total polyphenol concentration began to decrease when ethanol concentration was higher than 80% (v/v). Ethanol concentration was more important than extraction time in optimization of total polyphenol content in propolis extracts. Electron-donating ability increased with ethanol concentration and shorter extraction time, with ethanol concentration being of greater significance. Antioxidant ability in extracts was optimal at an ethanol concentration of 65 - 75% and with an extraction time of 2.2 - 3.6 h. Nitrite-scavenging ability was increased with use of higher ethanol concentration and shorter extraction time. Total flavonoid content was maximized with an ethanol concentration of 68 - 82% and an extraction time of 2.4 - 3.7 h. Total flavonoid content was affected by both ethanol concentration and extraction time. By superimposition of contour plots, an ethanol concentration of 72 - 82% and an extraction time of 2.2 - 3.3 h were optimal for preparation of propolis extracts.

Optimization of Steaming and Roasting Conditions for Maximized Hypoglycemic Properties of Polygonatum odoratum Tea (둥굴레차의 혈당강하 성분을 극대화시킬 수 있는 증자 및 볶음조건의 최적화)

  • Kim, Kyung-Tae;Kim, Jung-Ok;Lee, Gee-Dong;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.4
    • /
    • pp.549-556
    • /
    • 2005
  • Response surface methodology (RSM) was applied in steaming and roasting processes of Polygonatum odoratum roots in order to monitor hypoglycemic components and sensory property. In steaming and roasting processes based on the central composite design with variations in steaming time $(60\~180\;min)$, roasting temperature $(110\~150^{\circ}C)$ and roasting time $(10\~50\;min)$, coefficients of determinations $(R^2)$ were 0.8691 (p<0.05), 0.8253 (p<0.l0), 0.8727 (p<0.05), 0.8706 (p<0.05) and 0.8316 (p<0.10) in soluble solid, stigmasterol, $\beta-sitosterol$, hypoglycemic component (total), and overall acceptability, respectively. The maximum value of soluble solid was $71.47\%$ in 65.24 min of steaming time, $126.93^{\circ}C$ of roasting temperature and 37.58 min of roasting time. The maximum value of hypoglycemic component (total) was $764.10\;{\mu}g/g$ in 107.76 min, $117.78^{\circ}C$ and 14.70 min. Meantime, the maximum value of overall acceptability was 6.89 in 126.04 min, $115.79^{\circ}C$ and 43.93 min. The predicted values in optimum conditions for hypoglycemic components and sensory property were in good agreement with experimental values.

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.