• Title/Summary/Keyword: 박판해석

Search Result 351, Processing Time 0.031 seconds

On the Free Vibration Analysis of Thin-Walled Box Beams having Variable Cross-Sections (단면형상이 변하는 박판보의 진동해석에 관한 연구)

  • Lee, Gi-Jun;Sa, Jin-Yong;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • In this paper, a local deformation effect in thin-walled box beams is investigated via a finite element modal analysis. The analysis is carried out for single-cell and multi-cell box beam configurations. The single-cell box beam with and without a neck, which mimics a simple wind-turbine blade, is analyzed first. The results obtained by shell elements are compared to those of one-dimensional(1D) beam elements. It is observed that the wall thickness plays a crucial role in the natural frequencies of the beam. The 1D beam analysis deviates from the shell analysis when the wall thickness is either thin or thick. The shell modes(local deformations) are dominant as it becomes thin, whereas the shear deformation effects are significant as it does thick. The analysis is extended to the single-cell box beam with a neck, in which the shell modes are confined to near the neck. Finally the multi-cell box beam with a taper, which is quite similar to real wind-turbine blade configuration, is considered to investigate the local deformation effect. The results reveal that the 1D beam analysis cannot match with the shell analysis due to the local deformation, especially for the lagwise frequencies. There are approximately 5~7% errors even if the number of segments is increased.

Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (I) -Design Sensitivity Analysis- (직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (I) -설계민감도 해석 -)

  • Kim, Se-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2245-2252
    • /
    • 2002
  • Design sensitivity analysis scheme is proposed in an elasto -plastic finite element method with explicit time integration using a direct differentiation method. The direct differentiation is concerned with large deformation, the elasto-plastic constitutive relation, shell elements with reduced integration and the contact scheme. The design sensitivities with respect to the process parameter are calculated with the direct analytical differentiation of the governing equation. The sensitivity results obtained from the present theory are compared with that obtained by the finite difference method in a class of sheet metal forming problems such as hemi-spherical stretching and cylindrical cup deep-drawing. The result shows good agreement with the finite difference method and demonstrates that the preposed sensitivity calculation scheme is a pplicable in the complicated sheet metal forming analysis and design.

Mesh Design for the Finite Element Analysis of Thin Structures with Boundary Layers (경계층을 가진 박판구조물의 유한요소 해석을 위한 체눈 디자인)

  • 조진래
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.165-172
    • /
    • 1996
  • For thin elastic structures such as beams, arches, plates and shells, there may exist the boundary layer in the narrow thin region neighborhood of boundaries, where the solution displays the singular behavior exponentially decaying in the normal direction to the boundary. In the finite element analysis of these structures, finite element mesh patterns have a significant role to capture this singularity. This paper introduces the analytic study of this problem and provides a guideline to construct optimal mesh patterns together with numerical experiments.

  • PDF

금속 성형 공정의 준정적 변형 예측을 위한 외연적 시간 적분 유한 요소법의 적용성 연구

  • 유요한;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.192-197
    • /
    • 1995
  • 소재의 손실을 최소한 줄이면서 원하는 형상의 제품을 가공하는 가장 기본적인 금속 가공 방법은 금형을 이용하는 금속 성형(metal forming)이다. 본 논문에서는 준정적 금속 성형 문제 해석 에대한 외연적 시간 적분 유한 요소법의 적용성을 평가 하기 위하여 변형모드가 복잡한 박판튜브 (thin-walled tube)의 좌굴문제를 해석하여 변형과정이 이론 및 실험결과와 비교적 잘 일치하는지 살펴보기로 한다. 또한 준정적 금속 성형 문제 해석에 외연적 시간 적분 유한 요소법을 사용할 때 계산 시간을 줄이기 위하여 많이 사용되는 가압속도 조절법(loading velocity control technique) 의 타당성을 평가하기 위하여 박판 튜브와 중실 실린더(solid cylinder)의 변형 속도에 따른 변형 모드의 변화를 비교 관찰하여 기하학적 형상에따른 가압속도 조절법의 적용 가능 여부를 분석하여 보겠다.

  • PDF

The study on structural performance of fiber metal laminates (섬유금속 적층판의 구조적 성능 연구)

  • Kim, Sung Joon;Kim, Tae-Uk;Kim, Seungho
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • In this paper, yield stress, tangent modulus and failure strain were varied to ascertain the influence of impact response such as impact force histories and residual energy. And the buckling behavior of FML(Fiber Metal Laminates) were analyzed using numerical method. A number of analyses on FML and aluminum panel were conducted for shear and compression loading to compare the capability of stability. And to evaluate the static performance, static analysis has performed for box beam structure. Low-velocity impact analysis has performed on FML made of aluminum 2024 sheet and glass/epoxy prepreg layers. And the buckling and static performance of FML have been compared to aluminum using the analysis results. For the comparison of structural performance, similar analyses have been carried out on monolithic aluminum 2024 sheets of equivalent weight.

Numerical Analysis of Nonlinear Thermoelastic Stress for Rectangular Thin Plate (사각형 박판의 비선형 열탄성 응력 수치해석)

  • Kim Chi-Kyung;Kim Sung-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.155-160
    • /
    • 2004
  • A simply supported rectangular thin plate with temperature distribution varying over the thickness is analyzed. Since the thermal deflections are large compared to the plate thickness during bending and membrane stresses are developed md as such a nonlinear stress analysis is necessary. For the geometrically nonlinear, large deflection behavior of the plate, the classical von Karman equations are used. These equations are solved numerically by using the finite difference method. An iterative technique is employed to solve these quasi-linear algebraic equations. The results obtained from the suggested method are presented and discussed.

Crush Characteristics of Thin-walled Rectangular Tube (박판사각튜브의 압괴 특성)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, crush characteristics of thin-walled rectangular tube is investigated. The stiffness of the element is obtained from analytical moment-rotation relationship and approximated load-deflection relationship of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state each element for bending and compression.

  • PDF

Frictional Contact Model for Finite Element Analysis of Sheet-Metal Forming Processes (박판 성형 공정의 유한요소 해석을 위한 마찰접촉 모델)

  • 금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2242-2251
    • /
    • 1993
  • The mesh-based frictional contact model has been developed which does not rely on the spatial derivatives of the tool surface. Only points on the surface are evaluated from the description. which can then be simplified because of the relaxed demands placed on it. The surface tangents, normals, and corresponding derivatives at each finite-element node are evaluated directly from the finite-element mesh, in terms of the connecting nodal positions. The advantages accrue because there is no longer a need for a smooth tool surface to assure reasonable normals and derivatives. Furthermore, it can be shown that the equilibrium equations can only be properly written with a special normal derived from the mesh itself. The validity, accuracy, computation time, and stability of mesh-based contact model were discussed with the numerical examples of rounded flat-top and rough, flat-top rounded punch forming operations. Also, the forming process of a automobile inner panel section was simulated for testing the robustness of new contact model. In the discussion, the superiority of new model was examined, comparing with tool-based contact one.

Pressure Transfer Analysis and Experimental Verification of Thin Plate Spring Type Check Valve Considering P-delta Effect (P-delta 효과를 고려한 박판 스프링 형 체크밸브의 압력전달 해석 및 실험적 검증)

  • Hwang, Yong-Ha;Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • In this paper, the calculation of the theoretical pressure transfer ratio due to the deformation of the thin-plate spring type check valve applied to the small piezoelectric-hydraulic pump was carried out. A thin-plate check valve is a flexible body that is deformed by an external force. The deformation of the check valve affects the rate at which the chamber pressure is transferred to the load pressure. The theoretical pressure transfer ratio for each model was calculated to compare the difference between the assumption that the thin-plate check valve is a rigid body and that of the flexible body model. The P-delta effect was considered for the calculation of the pressure transfer ratio of the flexible check valve model. In addition, a verification test for the calculated pressure transfer ratio obtained by considering the deformation of the flexible check valve model was carried out. The load pressure was measured by applying a thin-plate and ball-thin plate spring type check valves, respectively. The experimental pressure transfer ratio was calculated using the respective load pressure obtained from the experiments. The validity of the pressure transfer analysis of the check valve, taking into consideration the P-delta effect, was verified by comparing it with the theoretically calculated pressure transfer ratio.