Abstract
For thin elastic structures such as beams, arches, plates and shells, there may exist the boundary layer in the narrow thin region neighborhood of boundaries, where the solution displays the singular behavior exponentially decaying in the normal direction to the boundary. In the finite element analysis of these structures, finite element mesh patterns have a significant role to capture this singularity. This paper introduces the analytic study of this problem and provides a guideline to construct optimal mesh patterns together with numerical experiments.
들보나 아치, 판재 그리고 쉘과 같은 박판구조물의 경계부근의 매우 좁은 영역에는 경계층이 존재하는데, 이 영역에서 해는 급격하게 변화하는 특이 거동을 나타낸다. 유한요소법을 이용하여 이러한 물체의 거동을 해석하는 경우, 이런 특이성을 묘사하기 위해 유한요소 체눈패턴이 대단히 중요한 역할을 한다. 이 논문은 경계층에 대한 이론적 해석과 최적의 체눈패턴을 형성하기 위한 가이드를 제시한다. 또한 이론적인 결과를 입증하는 예제도 소개하고자 한다.