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Numerical Analysis of Nonlinear Thermoelastic Stress for Rectangular
Thin Plate
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Abstract : A simply supported rectangular thin plate with temperature distribution varying over the thickness is analyzed.
Since the thermal deflections are large compared to the plate thickness during bending and membrane stresses are
developed and as such a nonlinear stress analysis is necessary. For the geometrically nonlinear, large deflection behavior
of the plate, the classical von Karman equations are used. These equations are solved numerically by using the finite
difference method. An iterative technique is employed to solve these quasi-linear algebraic equations. The results obtained

from the suggested method are presented and discussed.
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1. Introduction

One of the causes of stress in a body is nonuniform
heating. With rising temperature the elements of a body
expand. Such an expression generally cannot proceed
freely in a continuous body, and stresses due to the
heating are set up.

Fracture of glass when a surface is rapidly heated is
attributable to such stress.

Fatigue failure can occur as a result of temperature
fluctuations. The consequences of such thermal stress
are important in many aspects of engineering design,
as in turbines, jet engines, and nuclear reactors. Also
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the determination of thermal and shrinkage stresses in
restrained plates subjected to arbitrary temperature
variation and shrinkage is of practical importance and
often arises in many concrete constructions. The ma-
gnitudes of thermal and shrinkage stresses are nece-
ssary for determining the size of concrete block in ma-
ssive concrete construction or for designing the shear
connectors in case of composite construction to prevent
cracking of concrete. A number of classical articles on
the thermal stress analysis are presented in the litera-
ture>>”. Approximate solutions for a rectangular plate
restrained along an edge have been given by Aleck”
using energy methods, in which both normal and shear
stresses along the ‘edge have been considered. For the
same conditions of restraint, Kobotake and Inoue” also
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have been approximate solutions for a rectangular plate
restrained along an edge and two opposite edges. In
most of these investigations, either boundary conditions
on the free sides or clamping conditions are not
completely satisfied. Further, most of these investiga-
tors obtain the solution to the linear problem by con-
verting the thermal stress problem into one of specified
surface traction. Zienkiewicz'” proposed the numerical
solutions using a finite difference procedures for the
problem of elastically restrained plate. He first
employed a finite difference procedure for linear pro-
blems to take advantage of the special characteristics
of the matrices. Vallabhan'® solved the nonlinear plate
problem using finite difference method in which the
large deflected plate was solved using a direct method.
The primary objective of this study is to develop a
finite difference formulation of thin plate with tempera-
ture distribution varying over the thickness so that a
iterative technique can be used to solve the plate
numerically. A brief derivation of the nonlinear ther-
moelastic equations is given here, where the thermoela-
stic conditions are added on to the classical von Kar-
man equations®. A iterative procedure for nonlinear
problems to take advantage of the characteristics of the
matrices will be employed. These general equations are
used for computing thermal stresses in the plate by
using the finite difference method®.

2. Nonlinear Thermoelastic Equations of Plate

For a thin plate of thickness ¢ for large deflections,
if u, v, w are the displacements along the x, y, z axes
for the middle surface of the plate, according to von
Karman, the equations for plate is governed by the
following differential equations

Dviw=p+ tL{w,¢) — VM (1)

vig = —gL(w,w)~ 1—;1£v21v* 10))

Eq.(1) and Eq.(2) are the two major domain equa-

tions to be solved satisfying the ‘necessary boundary
conditions. The general boundary conditions for bend-
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ing behavior at the edge y=a are represented by

w=w

W= &

Vi= ~Dlwot@-ww,,l= V,
M,= —Dlwotpwy,l—M=M,
-M'= M,

Similar equations can be developed for the edge
representing y = b. For membrane behavior the boun-
dary conditions at y=a are represented by

6,=td = N,

Ty = —F ¢_xy= —ny

Similar equations can be developed for the other
edge. Here the quantities

. oE 2
w =L (" (a1 e 3)
I aE 2 4
= Tog ) (e D “

are termed thermal stress resultants. The differential
operator L, applied to w and ¢, is defined as

L(w, ¢) = [w,nqs,yy - 2¢,xyw,xy + w‘yyqs,xx] (5)

Here w(x, y) is the transverse displacement, D= Er/
12(1- £ is the flexural rigidity of the plate, ¢ is the
plate thickness, ¢ is the membrane stress function, p(x,
) is the lateral pressure, ¢ is the coefficient of thermal
expansion, AT is the change in temperature, £ is the
Young's modulus or the modulus of elasticity, z is the
Poissor's ratio, v/* is the Biharmonic operator, wy = ¢
w ox and @ = 9°¢/3x" These two equations are
nonlinear and coupled. Eq.(1) represents the bending
behavior of the plate due to the combined effects of
lateral load, in-plane membrane stresses and temperature
gradients across the thickness. Eq.(2) represents the
membrane behavior of the plate due to Iateral
displacements and in-plane temperature distributions.
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3. Mathematical Model for the Temperature
and Thermal Stress

The temperature condition on the plate is modeled
by considering temperature distributions on the top and
bottom of the plate. By the temperatures 7; and 7} at
all nodal points at top and bottom respectively, the
mean temperatures. 7,, at the middle surface and
temperature gradients (7; - 75) / ¢ across the thickness of
the plate are calculated for each nodal point. A linear
variation of temperature across the thickness of the
plate is assumed. The difference in temperature AT
for use in Eq.(3) and (4) is given by

(Tt"' Tb)
— S 2

AT = Tyt —

Substituting AT into Eq.(3) and (4), we get

_ __Em
N = (1—#)”
_ and M* = ﬁ%— (T,— Ty

Values of N and M are evaluated at each and
every nodal point using the above equations. Using the
finite difference models, values of VM and VN at
each node are calculated from the Eq.(1) and (2), and
these values represent the effects of the thermal load-
ing on the plate. From the displacements and mem-
brane functions obtained for the temperature condition,
the thermal stresses are computed from the following
expressions:

At the top of the plate,

0, = Gt %[—D.(w,xﬁ# w, ) — M) )
0, = bt [—D (w pytp w)—M] 0
Ty = *¢xy—%D(l—ﬂ)w,xy 8)

Similar expressions can be written for the stresses at
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the bottom of the plate by changing the signs of the
bending stresses.

4. Finite Difference Model

The method of finite differences replaces the plate
differential equation and the expressions defining the
boundary conditions with equivalent difference equa-
tion of a set of algebraic equations, written for every
nodal point within the plate. The differential equations
to be solved in this problem are Eq.(1) and (2). Since
the left hand sides of the equations contain a bihar-
monic operator, standard patterns for developing the
algebraic finite difference equations are represented by
finite difference models. Fig. 1. shows the computatio-
nal models for nodes close to the boundary.

Using central difference models with equal incre-
ments along the x and y axes, Eq.(l) and (2) are
replaced by two sets of algebraic equations, and the
nonlinear differential equations have been transformed
into two sets of coupled equations as

[M] {w} = {p} + Li(w, @)+ {Ds} ®

and

N {o}= Liw)+ {D.} (10)

where
[M] and [N] = Biharmonic operators

w = vector representing lateral displacement

p = vector representing load

@ = vector representing membrane function

L and L, = nonlinear functions representing part

of right side of von Karman's equations.

5+
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Fig. 1. Biharmonic eguation on the edge near the comer of
the plate
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Vectors Dy, and D,, correspond to the thermal terms
associated with the bending and membrane equations.
Both matrices M and N are symmetric and positive
definite. It can be seen that Eq.(9) represents lateral
deflection, while Eq.(10) represents the membrane
stress function.

5. lterative Procedure

The iterative procedure is a sequence of calculations
in which the body is fully loaded in each iteration.
Since the thermal deflections are large compared to the
plate thickness during bending and membrane stresses,
a nonlinear stress analysis is necessary. Using values
of wand ¢ from the i-th iteration the L, function can
be calculated numerically from the expression for Z(w,
@). The first von Karman's equation for the (i + 1)-th
iteration becomes

(MW"} = {p} + Li(w, ¢) + {Dn} an

From this, w'! can be determined. Now that w'! is
known, it can be substituted into the right hand side of
the second von Karman's equation such as that Eq.(10)
becomes

IN{ @™} = Law™") + (D} {Ds} (12)

and from this gom can be obtained. The iteration is
repeated until a satisfactory convergence is reached for
the displacement vector w'. An error term is used to
end the iteration when convergence is reached in the
computation of w

gl [ wit e ik
N

5t =

< B(Wiae) ! 13

where
i = iteration number
k = node number
N = number of nodes in the grid
B = iterative tolerance number

The above iterative scheme will converge only for
very small deflections. When deflections become large,
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the scheme will diverge. For the solution technique the
steps during a typical load increment can be summa-
rized as follows:

1. Assume initial values of w and ¢. Let w' and

¢’ be the value for the #-th iteration.

2. Use w and ¢’ to determine the values of the

vector Li(w, ¢) in Eq.(9)

3. Solve for w'"'

4. Use w'" to obtain the value of vector Lw) in

Eq.(10)
5. Solve for ¢
6. Check the convergence and repeat the 2 through
6, if the results are not satisfied.

The cycling is terminated when the nodal displace-
ment of step 3 reach sufficiently small values. If this
is not achieved in a predetermined number of cycles,
collapse conditions are deemed and the process is

stopped.

i+l

6. Numerical implementation and discussions

To illustrate the formulation of the method and its
efficiency the solution of a simply supported nonuni-
formly loaded rectangular thin aluminium plate is pre-
sented. Due to the symmetry of the problem only one
quarter of the plate is considered in the analysis(see
Fig. 1), and it is modelled by 12X 10 grid sizes. The
dimensions and material properties of the plate used
are a=60cm, b=T2cm, t=1.0cm, E=200GPa, a=

Wy = MAVI-YD

K
L. : @,XX=0
| $xy =0
lw=0
K :
I
t Waxx = MAI/1-p)/D
Fx =0t 4 =0
b0 ¥y =
ad } buy =0
; 7 =0
s | S, JR S, Y3
Wx =0
¥ by =0
x
z
»
i
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Fig. 2. Geometry, computational domain and boundary con-
ditions for the thermoelastic stress analysis of a rec-
tangular plate.
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0.000012, and ¢ =0.28. The plate is subjected to uni-
form temperature 100°C and uniform temperature 30C
at the upper and the lower surface, respectively. The
boundary conditions for a rectangular plate at simply
supported edges are

For the purpose of comparing the numerical results
of the present method, a linear plate with same
conditions is solved first. The Fourier series solution
for displacement w(x, y) is obtained as

_ 1M S & sin(max/a) sinl(nay/b)
wlx, )= (1—w)Dr* mz=:0 n‘go mn[(m] @)+ (n/ )]

m,n=1,3,5,..., co

Fig. 3 shows the temperature deflection curve of the
plate for thermal loads. These results give close agree-
ment to the analytical solution for a nonuniform heat-
ing. The maximum deflection at the center is found to
be 2.94cm, which is within 2.2% of the exact solution.
The variation of the displacements in the plate due to
thermal pressures is shown in Fig4. This demonstrates
the nonlinearity of the displacement patterns and the
migration of the maximum displacement from the
support towards the center of plate. A set of computer
generated maximum principle stress contours and
minimum principal stress contours are also presented
here in Fig. 5 and 6. These figures show the variation
of the maximum principal stresses from the center
towards the corrers of the plate. For analysis and design
of plate, the values of maximum principle stresses and
their location are valuable information.
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Fig. 3. Comparison of exact and present solutions of deflec—

tion at the middie of plate
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1. Conclusions

For a simply supported rectangular plate with tem-
perature distribution varying over the thickness is
analyzed. Since the thermal deflections are large com-
pared to the plate thickness during loading, both bend-
ing and membrane stresses are developed and as such
a nonlinear stress analysis is necessary, accounting for
the effects of large deflection. Thermal stresses in plates
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Fig. 6. Contours of minimum principle tensile stresses due to
AT=70C

may be divided into membrane and flexural stresses. In
both cases thermal stresses are produced only if res-
trictions on free expansions or contractions are impo-
sed, either by the boundary conditions or by continuity
requirements of the material. The mathematical formu-
lation of thermoelastic plate problems shows a close
resemblance to the corresponding isothermal cases. For
the geometrically nonlinear large deflection behavior of
the plate, the classical von Karman equations are used.
These nonlinear equations are solved numerically by
using the finite difference method. This method essen-
tially consists of large sets of algebraic equations in
terms of discrete values of the functions at discrete
nodes. An iterative scheme is employed to solve these
two sets of quasi-linear algebraic equations. This itera-
tive technique appears to be suitable for general nonli-
near behavior because it relies on the fact that a uni-
que deflection exists for an increment of load. The
study in the thermal stress analysis can be directed
towards analyzing various solar panels with different
sizes, thickness and coefficients of thermal expansion.
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