• Title/Summary/Keyword: 박용디젤엔진

Search Result 25, Processing Time 0.022 seconds

Exhaust Noise Control of Marine Diesel Engine Using Hybrid Silencer (조합형 소음기를 이용한 박용 디젤 엔진 배기 소음 제어)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.679-684
    • /
    • 2009
  • Low frequency exhaust noise of marine diesel engine is one of the most important noise sources in vessels. However, conventional absorptive silencers are ineffective to control exhaust noise because of low absorption in the low frequency range. In the paper, exhaust noise control of marine diesel engine was studied by using the hybrid silencer, which was composed of virtually divided array of concentric hole-cavity resonators and conventional absorptive silencer. A series of tests including field tests were performed to investigate the acoustic performance of the hybrid silencer. Consequently, its high performance of 5${\sim}$10 dB noise reduction in the low frequency range was confirmed and it is expected to be very helpful in reducing the exhaust noise of marine diesel engine.

A Study on the Characteristic of NOx Emissions by IMO Operating Modes in a Four Stroke Marine Power Generation Diesel Engine (선박 발전용 4행정 디젤엔진의 IMO 운전모드에 따른 NOx 배출특성에 관한 연구)

  • 김현규;김규보;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.457-465
    • /
    • 2004
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the performance and the emission characteristics of 4 stroke marine diesel engines for generation application in D2 cycle(IMO mode). The effects of important operating parameters, such as intake air pressure. intake air temperature and maximum combustion pressure on NOx emissions were also described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. But NOx emission is not affected by intake air pressure and exhaust gas back pressure.

Exhaust Noise Control of Marine Diesel Engine by using Resonator Type Silencer (공명형 소음기를 이용한 박용 디젤엔진 배기 소음 제어)

  • Lee, Tae-Kyung;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.350-354
    • /
    • 2008
  • Low frequency exhaust noise of marine diesel engine is one of the most important noise sources in vessels. However, conventional absorptive silencers are limited because the absorptive material is not effective in low frequency range. In the paper, exhaust noise control of marine diesel engine has been studied by using the resonator type silencer, which was composed of concentric hole-cavity resonators. The acoustic performance of the resonator type silencer was verified by the insertion loss measurement considering flow effect. Consequently, its high performance, about $5{\sim}8dB$ noise reduction, in the low frequency range was confirmed by insertion loss measurements conducted in the ship.

  • PDF

A study of NOx performance for Cu-chabazite SCR catalysts by Sulfur poisoning and desulfation (Cu-Chabazite SCR Catalysts의 황 피독 및 탈황에 의한 NOx 저감 성능에 관한 연구)

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.855-861
    • /
    • 2013
  • Small-pore Cu-chabazite SCR catalysts with high NOx conversion at low temperatures are of interest for marine diesel engines with exhaust temperatures in the range of 150 to $300^{\circ}C$. Unfortunately, fuels for marine diesel engines can contain a high level of sulfur of up to 1.5% by volume, which corresponds to a $SO_2$ level of 500 ppm in the exhaust gases for an engine operating with an A/F ratio of 50:1. This high level of $SO_2$ in the exhaust may have detrimental effects on the NOx performance of the Cu-chabazite SCR catalysts. In the present study, a bench-flow reactor is used to investigate the effects of sulfur poisoning on the NOx performance of Cu-chabazite SCR catalysts. The SCR catalysts were exposed to simulated diesel exhaust gas stream consisted of 500 ppm $SO_2$, 5% $CO_2$, 14% $O_2$, 5% $H_2O$ with $N_2$ as the balance gas at 150, 200, 250 and $300^{\circ}C$ for 2 hours at a GHSV of 30,000 $h^{-1}$. After sulfur poisoning the low-temperature NOx performance of the SCR catalyst is evaluated over a temperature range of 150-$300^{\circ}C$ to determine the extent of the catalyst deactivation. Desulfation is also carried out at 600 and $700^{\circ}C$ for 30 minutes to determine whether it is possible to recover the NOx performance of the sulfur-poisoned SCR Catalysts.

The Study on the Exhaust Emission Characteristics in Diesel Engine According to Intake Air Mass Flow (흡기유량에 따른 디젤엔진에서의 배출가스 특성에 대한 연구)

  • Kim, Hyung-Jun;Park, Yong-Hee;Eom, Myoung-Do;Ko, Jong-Min;Hwang, Jin-Woo;Lee, Sang-Hyun;Kee, Ji-Hoon;Kim, Jeong-Soo
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.16-20
    • /
    • 2013
  • The investigation was conducted to analyze the exhaust emission characteristics in diesel engine according to intake air mass flow. In this study, the test diesel engine with a 5,899 cubic centimeter displacement and power of the 260 ps was used to analyze the emission characteristics according to the intake air mass flow. In addition, the test modes were applied by the ND-13 and ETC mode. In order to analyze the emission characteristics, the engine dynamometer with 440 kW and emission gas analyzer (AMA-4000) were utilized. From the experimental results, it is revealed that the NOx and HC emissions in the intake air mass flow of large amount have high levels compared to those in the intake air mass flow of small amount in the ND-13 mode. However, the PM emission was shown the opposite trend in the NOx and HC emission due to the trade-off relation between the NOx and PM.

Development of Low Temperature Diesel Combustion Engine for Construction Equipments (건설기계용 저온연소 엔진시스템 개발)

  • Shim, Euijoon;Kim, Duksang;Lee, Dongin;Park, Yonghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.83-88
    • /
    • 2014
  • LTC(Low Temperature Combustion) technology has been studied to see feasibility of the combustion technology applied to heavy-duty engines on the laboratory scale. This study succeeded to develop a demo engine including realized low temperature combustion under partial load conditions. To find the best feasible LTC strategy, various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. Air management system was re-designed to make these combustion scheme stable and the re-designed air system helped expand LTC operating range. This study finally revealed plausible LTC concept to maximize benefit of the alternative combustion technology while overcoming handicaps of the LTC strategy.

The Effect of Swirl Flow on Combustion Characteristics in a Marine Diesel Engine (박용 디젤기관에서 스월유동이 연소특성에 미치는 영향)

  • 김병현;박권하;이상수;성낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.38-49
    • /
    • 2000
  • A diesel engine has been studied for many years to improve fuel economy and to reduce emissions as important factors governing the emission performance of diesel engines. This study addresses to swirl effects on combustion characteristics in a large diesel engine. The transport equations of flows and chemical reactions are given for fully compressible fluid. The simulations have been done for compression and expansion strokes and the results are given at several crank angles which are the angles at just before injection start, TDC, ATDC 90 and just before exhaust valve open. The results show that the strength of the swirl flow makes many effects on burning fuel and forming emissions.

  • PDF

Temperature Prediction of Cylinder Components in Medium-Speed Diesel Engine Using Conjugate Heat Transfer Analysis (복합 열전달 해석을 이용한 중속 디젤엔진 실린더 부품 온도 분포 예측)

  • Choi, Seong Wook;Yoon, Wook Hyoen;Park, Jong Il;Kang, Jeong Min;Park, Hyun Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.781-788
    • /
    • 2013
  • Predicting the engine component temperature is a basic step to conduct structural safety evaluation in medium-speed diesel engine design. Recent trends such as increasing power density and performance necessitate more effective thermal management of the engine for achieving the desired durability and reliability. In addition, the local temperatures of several engine components must be maintained in the proper range to avoid problems such as low- or high-temperature corrosion. Therefore, it is very important to predict the temperature distribution of each engine part accurately in the design stage. In this study, the temperature of an engine component is calculated by using steady-state conjugate heat transfer analysis. A proper approach to determine the thermal load distribution on the thermal boundary area is suggested by using 1D engine system analysis, 3D transient CFD results, and previous experimental data from another developed engine model. A Hyundai HiMSEN engine having 250-mm bore size was chosen to validate the analysis procedure. The predicted results showed a reasonable agreement with experimental results.

The Shape Optimal Design of Marine Medium Speed Diesel Engine Piston (박용(舶用) 중속(中速) 디젤엔진 피스톤의 형상최적설계(形狀最適設計))

  • Lee, Jun-Oh;Seong, Hwal-Gyeng;Cheon, Ho-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.59-70
    • /
    • 2008
  • Polynomial is used to optimize crown bowl shape of a marine medium speed diesel engine piston. The primary goal of this paper is that it's for an original design through a thermal stress and highest temperature minimum. Piston is modeled using solid element with 6 design variables defined the positional coordinate value. Global optimum of design variables are found and evaluated as developed and integrated with the optimum algorithm combining genetic algorithm(GA) and tabu search(TS). Iteration for optimization is performed based on the result of finite element analysis. After optimization, thermal stress and highest temperature reduced 0.68% and 1.42% more than initial geometry.

A Study on the Dynamic Characteristics and Performance of Geislinger Type Torsional Vibration Damper for Two Stroke, Low-speed Diesel Engine (저속 2행정디젤엔진의 가이스링거형 비틀림 진동댐퍼 동특성 및 성능에 관한 연구)

  • 이돈출;이병운;박용남;박병학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.17-28
    • /
    • 1992
  • During the last decade, engine makers have developed new types or increasing power rate engines to enlarge theirs marketing shear in two stroke, low-speed diesel engines. As the results, these engines have increased the additional stresses due to torsional vibration more than old model engines. The torsional vibration dampers are necessary in order to reduce heigher additional stresses of intermediate and crank shaft in these engine. In this paper, the optimum designing of Geislinger type torsional Damper has been carried out, based on the theoretical conception. The dynamic characteristics and performance fo dampers are estimated by the measuring results obtained with the monitoring system of dampers and additional stresses of propulsion shafts.

  • PDF