DOI QR코드

DOI QR Code

A study of NOx performance for Cu-chabazite SCR catalysts by Sulfur poisoning and desulfation

Cu-Chabazite SCR Catalysts의 황 피독 및 탈황에 의한 NOx 저감 성능에 관한 연구

  • Nam, Jeong-Gil (Division of Marine Engineering, Mokpo National Maritime University)
  • Received : 2013.09.11
  • Accepted : 2013.11.11
  • Published : 2013.11.30

Abstract

Small-pore Cu-chabazite SCR catalysts with high NOx conversion at low temperatures are of interest for marine diesel engines with exhaust temperatures in the range of 150 to $300^{\circ}C$. Unfortunately, fuels for marine diesel engines can contain a high level of sulfur of up to 1.5% by volume, which corresponds to a $SO_2$ level of 500 ppm in the exhaust gases for an engine operating with an A/F ratio of 50:1. This high level of $SO_2$ in the exhaust may have detrimental effects on the NOx performance of the Cu-chabazite SCR catalysts. In the present study, a bench-flow reactor is used to investigate the effects of sulfur poisoning on the NOx performance of Cu-chabazite SCR catalysts. The SCR catalysts were exposed to simulated diesel exhaust gas stream consisted of 500 ppm $SO_2$, 5% $CO_2$, 14% $O_2$, 5% $H_2O$ with $N_2$ as the balance gas at 150, 200, 250 and $300^{\circ}C$ for 2 hours at a GHSV of 30,000 $h^{-1}$. After sulfur poisoning the low-temperature NOx performance of the SCR catalyst is evaluated over a temperature range of 150-$300^{\circ}C$ to determine the extent of the catalyst deactivation. Desulfation is also carried out at 600 and $700^{\circ}C$ for 30 minutes to determine whether it is possible to recover the NOx performance of the sulfur-poisoned SCR Catalysts.

저온에서 NOx 저감률이 높은 작은 기공을 갖는 Cu-chabazite SCR 촉매는 150 에서 $300^{\circ}C$ 범위의 낮은 배기가스 온도를 갖는 박용 디젤엔진에 적용성이 높다. 불행하게도, 박용디젤엔진용 연료는 체적베이스로 1.5% 이상의 높은 레벨의 황을 함유 할 수 있다. 이것은 공연비 50:1로 엔진 운전시에 배기가스에 이산화황의 레벨이 500 ppm에 해당된다. 배기가스에 포함되어 있는 높은 레벨의 이산화황은 Cu-chabazite SCR 촉매의 NOx 저감률을 감소시키는 역할을 할 수 있다. 본 연구에서는 Cu-chabazite SCR촉매의 황 피독에 의한 NOx 저감 성능을 연구하기 위하여 벤치플로 시스템을 구축하였다. Cu-chabazite SCR 촉매를 황 피독 시키기 위하여 5% 이산화탄소, 14% 산소, 5% 물과 나머지 질소로 만들어진 배기가스에 500 ppm의 이산화황을 각각 150, 200, 250, $300^{\circ}C$에서 2시간씩 노출 시켰다. 황 피독후 Cu-chabazite SCR 촉매의 불활성 한계를 측정하기 위하여 저온(150~$300^{\circ}C$)에서 NOx 저감 성능을 평가하였다. 또한, 600 과 $700^{\circ}C$에서 각각 30분씩 탈황 작업을 수행하여, 황 피독된 Cu-chabazite SCR 촉매의 NOx 저감 성능이 회복될 수 있는 온도를 결정하였다.

Keywords

References

  1. A. James , Sulivan, Orla Keane, "The role of bronstead aciditiy in poisoning the SCR-urea reaction over FeZSM-5 catalysts" Applied Catalysis B: Environmental 61, PP. 244-252, 2005 https://doi.org/10.1016/j.apcatb.2005.06.001
  2. B. R. Greenhalgh, S. M. Kuznicki, A. E. Nelson, "Chabazite supported NiMo catalysts: Activity and sulfur poisoning", Applied Catalysis A: General 327, PP. 189-196, 2007 https://doi.org/10.1016/j.apcata.2007.05.002
  3. Jeong-Gil Nam and Jae-Sung Choi, "Dynamic characteristics of a urea SCR system for NOx reduction in diesel engine", Journal of the Korean Society of Marine Engineering, vol. 31, no. 3, PP. 235-242, 2007. https://doi.org/10.5916/jkosme.2007.31.3.235
  4. Jeong-Gil Nam, "Water injection/urea SCR system experimental results for NOx reduction on a light duty diesel engine", Journal of the Korean Society of Marine Engineering, vol. 32, no. 3, PP. 394-403, 2008. https://doi.org/10.5916/jkosme.2008.32.3.394
  5. Joseph R. Theis, "The poisoning and desulfation characteristics of iron and copper SCR catalysts", Society of Automotive Engineers International Journal of Fuels Lubr., vol. 2, no. 1, PP. 324-331, 2009 https://doi.org/10.4271/2009-01-0900
  6. Dmitry E. Doronkin, Tuhin Suvra Khan, Thomas Bligaard, and Sebastian Fogel, "Sulfur poisoning and regeneration of the $Ag/{\gamma}-Al_2O_3$ catalyst for $H_2$-assisted SCR of NOx by ammonia", Applied Catalysis B: Environmental 117-118, PP. 49-58, 2012 https://doi.org/10.1016/j.apcatb.2012.01.002
  7. MEPC/65/4/27, Air Pollution and Energy Efficiency, Technological Developments to Implement the Tier III NOx Emission Standards under MARPOL Annex VI, by Russian Federation, 2013

Cited by

  1. Influence of fuel injection pattern on combustion and emissions characteristics of diesel engine by using emulsified fuel applied with EGR system vol.38, pp.9, 2014, https://doi.org/10.5916/jkosme.2014.38.9.1064
  2. Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics vol.21, pp.4, 2015, https://doi.org/10.7464/ksct.2015.21.4.229
  3. A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship vol.39, pp.4, 2015, https://doi.org/10.5916/jkosme.2015.39.4.412
  4. Installation and characteristics of urea-selective catalytic reduction systems for nitrogen oxide reduction in marine diesel engine vol.231, pp.3, 2017, https://doi.org/10.1177/1475090217699679
  5. 수치해석을 통한 탈황반응기용 촉매의 재생공정 분석 vol.23, pp.2, 2017, https://doi.org/10.7464/ksct.2017.23.2.140
  6. 탈황, 재생공정 및 흡착속도 추정을 포함한 디젤용 탈황반응기 설계 vol.55, pp.6, 2017, https://doi.org/10.9713/kcer.2017.55.6.874
  7. 디젤탈황 단위공정의 CFD 모델링을 포함한 연료전지 시스템 공정설계 및 최적화 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.421
  8. 디젤탈황 단위공정의 CFD 모델링을 포함한 연료전지 시스템 공정설계 및 최적화 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.421
  9. Current Catalyst Technology of Selective Catalytic Reduction (SCR) for NOx Removal in South Korea vol.10, pp.1, 2013, https://doi.org/10.3390/catal10010052