• Title/Summary/Keyword: 박막태양전지

Search Result 948, Processing Time 0.028 seconds

Characteristics of Tin Oxide Thin Film Grown by Atomic Layer Deposition and Spin Coating Process as Electron Transport Layer for Perovskite Solar Cells (원자층 증착법과 용액 공정법으로 성장한 전자 수송층 산화주석 박막의 페로브스카이트 태양전지 특성)

  • Ki Hyun Kim;Sung Jin Chung;Tae Youl Yang;Jong Chul Lim;Hyo Sik Chang
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.475-481
    • /
    • 2023
  • Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 ℃. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.

The Study of Hole Injection Characteristics in Solution-Processed Copper (I) Thiocyanate (CuSCN) Film (용액 공정 처리된 구리(I) 티오시아네이트(CuSCN) 필름의 정공 주입 특성 연구)

  • Eun-Jeong Jang;Baeksang Sung;Sungmin Kwon;Yoonseuk Choi;Jonghee Lee;Jae-Hyun Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.61-65
    • /
    • 2024
  • The effectiveness of CuSCN as a hole injection layer in large-area organic light-emitting diodes, organic solar cells, and thin-film transistors has been well demonstrated. Therefore, in this study, the surface, optical, and electrical analyses of CuSCN were carried out according to the solution process conditions in order to propose optimized film conditions. Various CuSCN solution concentrations were prepared to determine the film surface characteristics and to determine whether the film surface affects the electrical performance of the device. When the CuSCN solution concentration was low, the CuSCN film was not formed and coated in the form of islands, and when the solution concentration was increased, the CuSCN film was formed uniformly, which contributed to improving the conductivity of the device. In addition, a hole-only device was fabricated to demonstrate the role of CuSCN as a hole transport layer.

Impact of Absorber Thickness on Bifacial Performance Characteristics of Semitransparent Amorphous Silicon Thin-Film Solar Cells (광흡수층 두께에 따른 투광형 비정질 실리콘 박막 태양전지의 양면발전 성능특성)

  • Seo, Yeong Hun;Lee, Ahruem;Shin, Min Jeong;Cho, Ara;Ahn, Seungkyu;Park, Joo Hyung;Yoo, Jinsu;Choi, Bo-Hun;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.97-102
    • /
    • 2019
  • Bifacial and semitransparent hydrogenated amorphous silicon (a-Si:H) thin-film solar cells in p-i-n configuration were prepared with front and rear transparent conducting oxide (TCO) electrodes using plasma-enhanced chemical vapor deposition method. Fluorine-doped tin oxide and tin-doped indium oxide films were used as front and rear TCO contacts, respectively. Film thickness of intrinsic a-Si:H absorber layers were controlled from 150 nm to 450 nm by changing deposition time. The dependence of performance characteristics of solar cells on the front and rear illumination direction were investigated. For front illumination, gradual increase in the short-circuit current density (JSC) from 10.59 mA/㎠ to 14.19 mA/㎠ was obtained, whereas slight decreases from 0.83 V to 0.81 V for the open-circuit voltage (VOC) and from 68.43% to 65.75% for fill factor (FF) were observed. The average optical transmittance in the wavelength region of 380 ~ 780 nm of the solar cells decreased gradually from 22.76% to 15.67% as the absorber thickness was changed from 150 nm to 450 nm. In case of the solar cells under rear illumination condition, the JSC increased from 10.81 to 12.64 mA/㎠ and the FF deceased from 66.63% to 61.85%, while the VOC values were maintained at 0.80 V with increasing the absorber thickness from 150 nm to 450 nm. By optimizing the deposition parameters, a high-quality bifacial and semitransparent a-Si:H solar cell with 350 nm-thick i-a-Si:H absorber layer exhibited the conversion efficiencies of 7.69% for front illumination and 6.40% for rear illumination, and average visible optical transmittance of 17.20%.

Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer (솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화)

  • Kim, Jin Hee;Seo, Yoon Kyung;Han, Joo Won;Oh, Ji Yoon;Kim, Yong Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) has attracted a great deal of attention as a transparent conductive material for organic solar cells or organic light-emitting diodes due to its high electrical conductivity, optical transparency, and excellent mechanical flexibility. It is well known that a solvent doping for PEDOT : PSS thin-films significantly increases the conductivity of films. In this paper, the effect of various kinds of solvent doping and post-treatment on the electrical and structural properties of PEDOT : PSS thin-films is investigated. The solvent doping greatly increases the conductivity of PEDOT : PSS thin-films up to 884 S/cm. A further enhancement of the conductivity of PEDOT : PSS thin-films is achieved by the solvent post-treatment which raises the conductivity up to 1131 S/cm. The enhancement is mainly caused by the depletion of insulating PSS and forming conducting PEDOT-rich granular networks. Strong optical absorption peaks at the wavelength of 225 nm of PEDOT : PSS thin-films indicate the depletion of insulating PSS by post-treatment. We believe that the solvent post-treatment is a promising method to achieve highly conductive transparent PEDOT : PSS thin-films for applications in efficient, low-cost and flexible organic devices.

Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors (고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층)

  • Lee, Minjung;Lee, Seulyi;Yoo, Jaeseok;Jang, Mi;Yang, Hoichang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

A Growth and Characterization of CsPbBr3 Thin Film Grown by Thermal Chemical Vapor Deposition (열화학기상증착법을 이용한 CsPbBr3 박막 성장 및 특성 연구)

  • Ga Eun Kim;Min Jin Kim;Hyesu Ryu;Sang Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2023
  • In this study, inorganic perovskite films with different compositions were grown by thermal chemical vapor deposition depending on the substrate and their optical properties were compared. Inorganic perovskite crystals were grown on SiO2/Si and c-Al2O3 substrates using CsBr and PbBr2, respectively, under the same growth conditions. Cs4PbBr6-CsPbBr3 crystallites were grown on the SiO2 with polycrystalline structure, while a CsPbBr3 (100) dominant thin film was formed on the c-Al2O3 substrate with single crystal structure. From the photoluminescence measurement, CsPbBr3 showed typical green emission centered at 534 nm with a full width at half maximum (FWHM) of about 91 meV. The Cs4PbBr6-CsPbBr3 mixed structure exhibits blue-shifted emission at 523 nm with a narrow FWHM of 63 meV and a fast decay time of 6.88 ns. These results are expected to be useful for application in photoelectric devices such as displays, solar cells, and light sensors based on inorganic metal perovskites.

Effect of Surfactants on ZnO Synthesis by Hydrothermal Method and Photocatalytic Properties (계면활성제 첨가에 의한 산화아연의 수열합성과 광촉매 특성)

  • Hyeon, Hye-Hyeon;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Zinc oxide is, one of metal oxide semiconductor, harmless to human and environment-friendly. It has excellent chemical and thermal stability properties. Wurtzite-zinc oxide is a large band gap energy of 3.37 eV and high exciton binding energy of 60 meV. It can be applied to various fields, such as solar cells, degradation of the dye waste, the gas sensor. The photocatalytic activity of zinc oxide is varied according to the particle shape and change of crystallinity. Therefore, It is very important to specify the additives and the experimental variables. In this study, the zinc oxide were synthesized by using a microwave assisted hydrothermal synthesis. The precursor was used as the zinc nitrate, the pH value was controlled as 11 by NaOH. Surfactants are the ethanolamine, cetyltrimethylammonium bromide, sodium dodecyl sulfate, sorbitan monooleate was added by changing the concentration. The composite particles had the shape of a star-like, curcular cone, seed shape, flake-sphere. Physical and chemical properties of the obtained zinc oxide was characterized using x-ray diffractometer, field emission scanning electron microscopy, thermogravimetric analysis and optical properties was characterized using UV-visible spectroscopy, photoluminescence and raman spectroscopy.

A Study on Properites of PV Solar cell AZO thin films post-annealing by RTP technique (RTP 공정을 통한 태양전지용 AZO 박막의 후열처리 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Han, Chang-Jun;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Deok;Lee, Suk-Ho;Back, Su-Ung;Na, Kil-Ju;Jeong, Woon-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • In this paper, ZnO:Al thin films with c-axis preferred orientation were prepared on Soda lime glass substrates by RF magnetron sputtering technique. AZO thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the AZO were vapor-deposited in the named order. It is well-known that post-annealing is an important method to improve crystal quality. For the annealing process, the dislocation nd other defects arise in the material and adsorption/decomposition occurs. The XRD patterns of the AZO films deposited with grey theory prediction design, annealed in a vacuum ambient($2.0{\times}10-3$Torr)at temperatures of 200, 300, 400 and $500^{\circ}C$ for a period of 30min. The diffraction patterns of all the films show the AZO films had a hexagonal wurtzite structure with a preferential orientation along the c-axis perpendicular to the substrate surface. As can be seen, the (002)peak intensities of the AZO films became more intense and sharper when the annealing temperature increased. On the other hand, When the annealing temperature was $500^{\circ}C$ the peak intensity decreased. The surface morphologies and surface toughness of films were examined by atomic force microscopy(AFM, XE-100, PSIA). Electrical resistivity, Gall mobility and carrier concentration were measured by Hall effect measuring system (HL5500PC, Accent optical Technology, USA). The optical absorption spectra of films in the ultraviolet-visibleinfrared( UV-Vis-IR) region were recorder by the UV spectrophotometer(U-3501, Hitachi, Japan). The resistivity, carrier concentration, and Hall mobility of ZnS deposited on glass substrate as a function of post-annealing.

  • PDF

Effect of the Concentration of Citrate on the Growth of Aqueous Chemical Bath Deposited ZnO and Application of the Film to Cu(In,Ga)Se2 Solar Cells (Citrate 농도에 따른 수용액 화학조 증착 ZnO 성장 및 ZnO 박막의 Cu(In,Ga)Se2 태양전지 응용)

  • Cho, Kyung Soo;Jang, Hyunjun;Oh, Jae-Young;Kim, Jae Woo;Lee, Jun Su;Choi, Yesol;Hong, Ki-Ha;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.204-210
    • /
    • 2020
  • ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.