Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.4.204

Effect of the Concentration of Citrate on the Growth of Aqueous Chemical Bath Deposited ZnO and Application of the Film to Cu(In,Ga)Se2 Solar Cells  

Cho, Kyung Soo (Department of Materials and Manufacturing Engineering, Hanbat National University)
Jang, Hyunjun (Department of Materials Science and Engineering, Hanbat National University)
Oh, Jae-Young (Department of Materials Science and Engineering, Hanbat National University)
Kim, Jae Woo (Department of Materials Science and Engineering, Hanbat National University)
Lee, Jun Su (Department of Materials Science and Engineering, Hanbat National University)
Choi, Yesol (Department of Materials Science and Engineering, Hanbat National University)
Hong, Ki-Ha (Department of Materials Science and Engineering, Hanbat National University)
Chung, Choong-Heui (Department of Materials and Manufacturing Engineering, Hanbat National University)
Publication Information
Korean Journal of Materials Research / v.30, no.4, 2020 , pp. 204-210 More about this Journal
Abstract
ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.
Keywords
ZnO; chemical bath deposition; $Cu(In,Ga)Se_2$; solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. L. Pei, X. B. Zhang, G. P. Zhang, J. Gong, C. Sun, R. F. Huang and L. S. Wen, Thin Solid Films, 497, 20 (2006).   DOI
2 V. Musta, B. Teixeira, E. Fortunato, R. C. C. Monteiro and P. Vilarinho, Surf. Coat. Technol., 180, 659 (2004).   DOI
3 T. Minami, H. Sato, H. Nanto and S. Takata, Jpn. J. Appl. Phys., Part 2, 24, L781 (1985).   DOI
4 M. E. Fragala and G. Malandrino, Microelectron. J., 40, 381 (2009).   DOI
5 A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto and M. Okuda, Jpn. J. Appl. Phys., Part 2, 35, L56 (1996).   DOI
6 Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song and P. Yand, Chem. Eur. J., 8, 1260 (2002).   DOI
7 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater., 13, 113 (2001).   DOI
8 C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 81, 3648 (2002).   DOI
9 T. Minami, T. Yamamoto and T. Miyata, Thin Solid Films, 366, 63 (2000).   DOI
10 J. F. Guillemoles, L. Kronik, D. Chaen, U. Rau, A. Jasanek and H. W. Schock, J. Phys. Chem. B, 104, 4849 (2000).   DOI
11 T. Hamada, A. Ito, E. Fujii, D. Chu, K. Kato and Y. Masuda, J. Cryst. Growth, 311, 3687 (2009).   DOI
12 H. Hagendorfer, K. Lienau, S. Nishiwaki, C. M. Fella, L. Kranz, A. R. Uhl, D. Jaeger, L. Luo, C. Gretener, S. Buecheler, Y. E. Romanyuk and A. N. Tiwari, Adv. Mater., 26, 632 (2014).   DOI
13 S. Lee, K. S. Cho, S. Song, K. Kim, Y. J. Eo, J. H. Yun, J. Gwak and C.H. Chung, J. Vis. Exp., 149, e59909 (2019).
14 Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi and H. F. Xu, Nat. Mater., 2, 821 (2003).   DOI
15 J. G. Lu, S. Fujita, T. Kawaharamura, H. Nichinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zemg, L. P. Zhu, H. P. He and B. H. Zhao, J. Appl. Phys., 101, 083705 (2007).   DOI
16 C. H. Chung, S. H. Li, B. Lei, W. Yang, W. W. Hou, B. Bob and Y. Yang, Chem. Mater., 23, 964 (2011).   DOI
17 C. H. Chung, B. Lei, B. Bob, S. H. Li, W. W. Hou, H. S. Duan and Y. Yang, Chem. Mater., 23, 4941 (2011).   DOI
18 C. H. Chung, T. B. Song, B. Bob, R. Zhu, H. S. Duan and Y. Yang, Adv. Mater., 24, 5499 (2012).   DOI
19 C. H. Chung, B. Bob, B. Lei, S. H. Li, W. W. Hou and Y. Yand, Sol. Energy Mater. Sol. Cells, 113, 148 (2013).   DOI
20 C. H. Chung, K. H. Hong, D. K. Lee, J. H. Yun and Y. Yang, Chem. Mater., 27, 7244 (2015).   DOI
21 C. H. Chung, B. Bob, T. B. Song and Y. Yang, Sol. Energy Mater. Sol. Cells, 120, 642 (2014).   DOI
22 J. Jang, J. S. Lee, K. H. Hong, D. K. Lee, S. Song, K. Kim, Y. J. Eo, J. H. Yun and C. H. Chung, Sol. Energy Mater. Sol. Cells, 170, 60 (2017).   DOI
23 S. Lee. J. S. Lee, J. Jang, K. H. Hong, D. K. Lee, S. Song, K. Kin, Y. J. Eo, J. Gwak and C. H. Chung, Nano Energy, 53, 675 (2018).   DOI
24 S. Lee, J. Jang, K. S. Cho, Y. J. Oh, K. H. Hong, S. Song, K. Kim, Y. J. Eo, J. H. Yun, J. Gwak and C. H. Chung, Sol. Energy, 180, 519 (2019).   DOI
25 S. Lee, J. Jang, T. Park, Y. M. Park, J. S. Park, Y. K. Kim, H. K. Lee, E. C. Jeon, D. K. Lee, B. Ahn and C. H. Chung, ACS Appl. Mater. Interfaces., 12, 6169 (2020).   DOI
26 C. H. Chung, Phys. Rev. Appl., 12, 024060 (2019).   DOI
27 M. Miyake, H. Fukui and T. Hirato, Phys. Status Solidi A, 209, 945 (2012).   DOI