Browse > Article

Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors  

Lee, Minjung (Department of Advanced Fiber Engineering, Inha University)
Lee, Seulyi (Department of Advanced Fiber Engineering, Inha University)
Yoo, Jaeseok (Department of Advanced Fiber Engineering, Inha University)
Jang, Mi (Department of Advanced Fiber Engineering, Inha University)
Yang, Hoichang (Department of Advanced Fiber Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.24, no.3, 2013 , pp. 219-226 More about this Journal
Abstract
Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.
Keywords
gate dielectric; soft electronics; organic semiconductor; organic field-effect transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000).   DOI   ScienceOn
2 S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater., 3, 317 (2004).   DOI   ScienceOn
3 Y.-l. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, J. Am. Chem. Soc., 124, 7654 (2002).   DOI   ScienceOn
4 Q. J. Cai, M. B. Chan-Park, Q. Zhou, Z. S. Lu, C. M. Li, and B. S. Ong, Org. Electron., 9, 936 (2008).   DOI   ScienceOn
5 D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys., 100, 024509 (2006).   DOI   ScienceOn
6 H. Yang, C. Yang, S. H. Kim, M. Jang, and C. E. Park, ACS Appl. Mater. Interf., 2, 391 (2010).   DOI   ScienceOn
7 S. Kola, J. Sinha, and H. E. Katz, J. Polym. Sci., Part B: Polym. Phys., 50, 1090 (2012).   DOI   ScienceOn
8 J. Veres, S. Ogier, and G. Lloyd, Chem. Mater., 16, 4543 (2004).   DOI   ScienceOn
9 A. Ulman, Chem. Rev., 96, 1533 (1996).   DOI   ScienceOn
10 D. H. Kim, H. S. Lee, H. Yang, L. Yang, and K. Cho, Adv. Funct. Mater., 18, 1363 (2008).   DOI   ScienceOn
11 S. Y. Yang, K. Shin, S. H. Kim, H. Jeon, J. H. Kang, H. Yang, and C. E. Park, J. Phys. Chem., B, 110, 20302 (2006).   DOI   ScienceOn
12 H. Yang, S. H. Kim, L. Yang, S. Y. Yang, and C. E. Park, Adv. Mater., 19, 2868 (2007).   DOI   ScienceOn
13 S. H. Kim, K. Hong, M. Jang, J. Jang, J. E. Anthony, H. Yang, and C. E. Park, Adv. Mater., 22, 4809 (2010).   DOI   ScienceOn
14 S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nat. Mater., 9, 859 (2010).   DOI   ScienceOn
15 Y. Guo, G. Yu, and Y. Liu, Adv. Mater., 22, 4427 (2010).   DOI   ScienceOn
16 G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Tony, and Z. Bao, Nature, 480, 504 (2011).   DOI   ScienceOn
17 S. H. Kim, M. Jang, H. Yang, and C. E. Park, J. Mater. Chem., 20, 5612 (2010).   DOI   ScienceOn
18 D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, and J. E. Anthony, Nat. Mater., 7, 216 (2008).   DOI   ScienceOn
19 C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, and S. Patil, J. Am. Chem. Soc., 134, 16532 (2012).   DOI   ScienceOn
20 C. Cheng, C. Yu, Y. Guo, H. Chen, Y. Fang, G. Yu, and Y. Liu, Chem. Commun., 49, 1998 (2013).   DOI   ScienceOn
21 I. Kang, T. K. An, J.-A. Hong, H.-J. Yun, R. Kim, D. S. Chung, C. E. Park, Y.-H. Kim, and S.-K. Kwon, Adv. Mater., 25, 524 (2013).   DOI   ScienceOn
22 H. Yang, T. J. Shin, M.-M. Ling, K. Cho, C. Y. Ryu, and Z. Bao, J. Am. Chem. Soc., 127, 11542 (2005).   DOI   ScienceOn
23 H. Yang, S. W. Lefevre, C. Y. Ryu, and Z. Bao, Appl. Phys. Lett., 90, 172116 (2007).   DOI   ScienceOn
24 H. Yang, T. J. Shin, Z. Bao, and C. Y. Ryu, J. Polym. Sci., Part B: Polym. Phys., 45, 1303 (2007).   DOI   ScienceOn
25 M.-H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc., 128, 12851 (2006).   DOI   ScienceOn
26 D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, and K. Cho, Adv. Funct. Mater., 15, 77 (2005).   DOI   ScienceOn
27 J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 105, 1103 (2005).   DOI   ScienceOn
28 H. Yang, L. Yang, M.-M. Ling, S. Lastella, D. D. Gandhi, G. Ramanath, Z. Bao, and C. Y. Ryu, J. Phys. Chem. C, 112, 16161 (2008).   DOI   ScienceOn
29 S. H. Kim, W. M. Yoon, M. Jang, H. Yang, J.-J. Park, and C. E. Park, J. Mater. Chem., 22, 7731 (2012).   DOI   ScienceOn
30 L. Yang and H. Yang, J. Synchrotron Rad., 16, 788 (2009).   DOI   ScienceOn
31 S. H. Kim, M. Jang, H. Yang, J. E. Anthony, and C. E. Park, Adv. Funct. Mater., 21, 2198 (2011).   DOI   ScienceOn
32 T. B. Singh, N. S. Sariciftci, H. Yang, L. Yang, B. Plochberger, and H. Sitter, Appl. Phys. Lett., 90, 213512 (2007).   DOI   ScienceOn