DOI QR코드

DOI QR Code

The Study of Hole Injection Characteristics in Solution-Processed Copper (I) Thiocyanate (CuSCN) Film

용액 공정 처리된 구리(I) 티오시아네이트(CuSCN) 필름의 정공 주입 특성 연구

  • Eun-Jeong Jang (Department of Electronic Engineering, Hanbat National University) ;
  • Baeksang Sung (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Sungmin Kwon (Research Institute of Printed Electronics & 3D Printing, Industry-University Cooperation Foundation, Hanbat National University) ;
  • Yoonseuk Choi (Department of Electronic Engineering, Hanbat National University) ;
  • Jonghee Lee (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Jae-Hyun Lee (Department of Creative Convergence Engineering, Hanbat National University)
  • 장은정 (한밭대학교 전자공학과) ;
  • 성백상 (한밭대학교 창의융합학과) ;
  • 권성민 (한밭대학교 산학협력단 인쇄전자 및 3D 프린팅 연구소) ;
  • 최윤석 (한밭대학교 전자공학과) ;
  • 이종희 (한밭대학교 창의융합학과) ;
  • 이재현 (한밭대학교 창의융합학과)
  • Received : 2024.01.11
  • Accepted : 2024.02.02
  • Published : 2024.02.10

Abstract

The effectiveness of CuSCN as a hole injection layer in large-area organic light-emitting diodes, organic solar cells, and thin-film transistors has been well demonstrated. Therefore, in this study, the surface, optical, and electrical analyses of CuSCN were carried out according to the solution process conditions in order to propose optimized film conditions. Various CuSCN solution concentrations were prepared to determine the film surface characteristics and to determine whether the film surface affects the electrical performance of the device. When the CuSCN solution concentration was low, the CuSCN film was not formed and coated in the form of islands, and when the solution concentration was increased, the CuSCN film was formed uniformly, which contributed to improving the conductivity of the device. In addition, a hole-only device was fabricated to demonstrate the role of CuSCN as a hole transport layer.

대면적 유기 발광 다이오드, 유기 태양 전지, 박막 트렌지스터의 정공 주입층으로써 CuSCN의 효과가 많이 입증되었다. 따라서 본 연구에서는 용액 공정 조건에 따라 CuSCN의 표면과 광학적, 전기적 분석을 하여 최적화된 필름의 조건을 제시하였다. 다양한 CuSCN 용액의 농도를 제작하여 필름 표면 특성을 확인하였고, 필름의 표면이 소자의 전기적 성능에 영향을 미치는지 확인하였다. CuSCN의 용액의 농도가 낮을 때는 CuSCN의 필름이 형성되지 않고 island 형태로 코팅되었고, 용액의 농도가 증가할수록 CuSCN의 필름이 균일하게 형성하였고 이는 소자의 전도도 향상에 기여하였다. 또한 hole only device를 제작하여 CuSCN의 정공 수송 층으로써의 역할을 입증하였다.

Keywords

Acknowledgement

본 논문은 교육부에서 지원하는 한국연구재단(NRF)의 기초과학연구사업의 지원을 받아 수행된 연구입니다(2018R1A6A1A03026005).

References

  1. T.-H. Han, M.-R. Choi, C.-W. Jeon, Y.-H. Kim, S.-K. Kwon, and T.-W. Lee, Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials, Sci. Adv., 2, e1601428 (2016). 
  2. K.-W. Tsai, M.-K. Hung, Y.-H. Mao, and S.-A. Chen, Solution-processed thermally activated delayed fluorescent OLED with high EQE as 31% using high triplet energy crosslinkable hole transport materials, Adv. Funct. Mater., 29, 1901025 (2019). 
  3. A. R. Duggal, C. M. Heller, J. J. Shiang, J. Liu and L. N. Lewis, Solution-processed organic light-emitting diodes for lighting, J. Disp. Technol., 3, 184-192 (2007).  https://doi.org/10.1109/JDT.2007.895357
  4. L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, and Y. Qiu, Solution processable small molecules for organic light-emitting diodes, J. Mater. Chem., 20, 6392-6407 (2010).  https://doi.org/10.1039/b926348a
  5. X. Xing, L. Zhong, L. Zhang, Z. Chen, B. Qu, E. Chen, L. Xiao, and Q. Gong, Essential differences of organic films at the molecular level via vacuum deposition and solution processes for organic light-emitting diodes, J. Phys. Chem. C, 117, 25405-25408 (2013).  https://doi.org/10.1021/jp410547w
  6. F. So and D. Kondakov, Degradation mechanisms in small-molecule and polymer organic light-emitting diodes, Adv. Mater., 22, 3762-3777 (2010).  https://doi.org/10.1002/adma.200902624
  7. H. Chen, Y. Hou, C. E. Halbig, S. Chen, H. Zhang, N. Li, F. Guo, X. Tang, N. Gasparini, I. Levchuk, S. Kahmann, C. O. R. Quiroz, A. Osvet, S. Eigler, and C. J. Brabec, Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design, J. Mater. Chem. A., 4, 11604-11610 (2016).  https://doi.org/10.1039/C6TA03755K
  8. Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Effects of thickness and thermal annealing of the PEDOT: PSS layer on the performance of polymer solar cells, Org. Electron., 10, 205-209 (2009).  https://doi.org/10.1016/j.orgel.2008.10.003
  9. K. Fehse, R. Meerheim, K. Walzer, K. Leo, W. Lovenich, and A. Elschner, Lifetime of organic light emitting diodes on polymer anodes, Appl. Phys. Lett., 93, 083303 (2008). 
  10. J. Cameron and P. J. Skabara, The damaging effects of the acidity in PEDOT: PSS on semiconductor device performance and solutions based on non-acidic alternatives, Mater. Horizons., 7, 1759-1772 (2020). https://doi.org/10.1039/C9MH01978B
  11. J. Meyer, R. Khalandovsky, P. Gorrn, and A. Kahn, MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics, Adv. Mater., 23, 70-73 (2011).  https://doi.org/10.1002/adma.201003065
  12. T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D Cheng, and Y. Cao, Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer, Adv. Energy Mater., 2, 523-527 (2012).  https://doi.org/10.1002/aenm.201100598
  13. J. R. Manders, S. -W. Tsang, M. J. Hartel, T. -H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells, Adv. Funct. Mater., 23, 2993-3001 (2013).  https://doi.org/10.1002/adfm.201202269
  14. A. Perumal, H. Faber, N. Yaacobi-Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M. A. McLachlan, P. N. Stavrinou, T. D. Anthopoulos, and D. D. C. Bradley, High-efficiency, solution-processed, multilayer phosphorescent organic light-emitting diodes with a copper thiocyanate hole-injection/hole-transport layer, Adv. Mater., 27, 93-100 (2015).  https://doi.org/10.1002/adma.201403914
  15. T. Ding, N. Wang, C. Wang, X. Wu, W. Liu, Q. Zhang, W. Fan, and X. W. Sun, Solution-processed inorganic copper (I) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes, RSC Adv., 7, 26322-26327 (2017).  https://doi.org/10.1039/C7RA03433D
  16. S. Sahoo, D. K. Dubey, M. Singh, V. Joseph, K. R. J. Thomas, and J. -H. Jou, Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter, Jpn. J. Appl. Phys., 57, 04FL08 (2018). 
  17. H. U. Hwang, J. Yoon, Y. -S Lee, J. Lee, J. Lee, K. -G. Lim, J. W. Kim, Enhanced hole injection and transport property of thermally deposited copper thiocyanate (CuSCN) for organic light-emitting diodes, APL Mater., 10, 051109 (2022). 
  18. S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano Lett., 15, 3723-3728 (2015).  https://doi.org/10.1021/acs.nanolett.5b00116
  19. N. Yaacobi-Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N. Stingelin, D. D. C. Bradley, P. N. Stavrinou, M. Heeney, and T. D. Anthopoulos, High-efficiency organic photovoltaic cells based on the solution-processable hole transporting interlayer copper thiocyanate (CuSCN) as a replacement for PEDOT: PSS, Adv. Energy Mater., 5, 1401529 (2015). 
  20. U. B. Qasim, M. M. Saeed, H. Ullah, and H. Imran, Investigating the potential of CuSCN as hole transport layer for perovskite solar cells for applications in indoor photovoltaics, Jpn. J. Appl. Phys., 61, 091001 (2022). 
  21. P Worakajit, T Sudyoadsuk, V Promarak, A Saeki, and P Pattanasattayavong, Antisolvent treatment of copper(i) thiocyanate (CuSCN) hole transport layer for efficiency improvements in organic solar cells and light-emitting diodes, J. Mater. Chem. C, 9, 10435-10442 (2021).  https://doi.org/10.1039/D1TC02897A
  22. V. E. Madhavan, I. Zimmermann, A. A. Baloch, A. Manekkathodi, A. Belaidi, N. Tabet, and M. K. Nazeeruddin, CuSCN as hole transport material with 3D/2D perovskite solar cells, ACS Appl. Energ. Mater., 3, 114-121 (2019). 
  23. S. R. Thomas, P. Pattanasattayavong, and T. D. Anthopoulos, Solution-processable metal oxide semiconductors for thin-film transistor applications, Chem. Soc. Rev., 42, 6910-6923 (2013).  https://doi.org/10.1039/c3cs35402d
  24. B. Wang, S. Nam, S. Limbu, J. -S. Kim, M. Ridede, and D. D. C. Bradley, Properties and applications of copper(I) thiocyanate hole-transport interlayers processed from different solvents, Adv. Electron. Mater., 8, 2101253 (2022). 
  25. P. Pattanasattayavong, V. Promarak, and T. D. Anthopoulos, Electronic properties of copper (I) thiocyanate (CuSCN), Adv. Electron. Mater. 3(3), 1600378 (2017). 
  26. E. V. A Premalal, N. Dematage, G. R. R. A. Kumara, R. M. G. Rajapakse, M. Shimomura, K. Murakami, and A. Konno, Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells, J. Power Sources, 203, 288-296 (2012).  https://doi.org/10.1016/j.jpowsour.2011.12.034