DOI QR코드

DOI QR Code

Effect of Surfactants on ZnO Synthesis by Hydrothermal Method and Photocatalytic Properties

계면활성제 첨가에 의한 산화아연의 수열합성과 광촉매 특성

  • Hyeon, Hye-Hyeon (Department of Engineering Chemistry, Chungbuk National University) ;
  • Lee, Dong-Kyu (Department of Engineering Chemistry, Chungbuk National University)
  • 현혜현 (충북대학교 공과대학 공업화학과) ;
  • 이동규 (충북대학교 공과대학 공업화학과)
  • Received : 2017.02.01
  • Accepted : 2017.03.21
  • Published : 2017.03.30

Abstract

Zinc oxide is, one of metal oxide semiconductor, harmless to human and environment-friendly. It has excellent chemical and thermal stability properties. Wurtzite-zinc oxide is a large band gap energy of 3.37 eV and high exciton binding energy of 60 meV. It can be applied to various fields, such as solar cells, degradation of the dye waste, the gas sensor. The photocatalytic activity of zinc oxide is varied according to the particle shape and change of crystallinity. Therefore, It is very important to specify the additives and the experimental variables. In this study, the zinc oxide were synthesized by using a microwave assisted hydrothermal synthesis. The precursor was used as the zinc nitrate, the pH value was controlled as 11 by NaOH. Surfactants are the ethanolamine, cetyltrimethylammonium bromide, sodium dodecyl sulfate, sorbitan monooleate was added by changing the concentration. The composite particles had the shape of a star-like, curcular cone, seed shape, flake-sphere. Physical and chemical properties of the obtained zinc oxide was characterized using x-ray diffractometer, field emission scanning electron microscopy, thermogravimetric analysis and optical properties was characterized using UV-visible spectroscopy, photoluminescence and raman spectroscopy.

금속산화물 반도체 중 하나인 산화아연은 인체에 무해하고 친환경적이며, 우수한 화학적, 열적 안정성의 특성을 지니며 3.37 eV의 넓은 밴드갭 에너지와 60 meV의 높은 엑시톤 바인딩 에너지로 인해 태양전지, 염료페기물의 분해, 가스센서 등 다양한 분야에 응용이 가능한 물질이다. 산화아연은 입자 형상 및 결정성의 변화에 따라 광촉매 활성이 변하게 된다. 따라서, 다양한 실험변수와 첨가제를 사용하여 입자를 합성하는 것이 매우 중요하다. 본 논문에서는 마이크로파 수열합성법을 사용하여 산화아연을 합성하였다. 전구체로는 질산아연을 사용하였고, 수산화나트륨을 사용하여 용액의 pH를 11로 조정하였다. 첨가제로는 계면활성제인 에탄올아민, 세틸트리메틸암모늄브로마이드, 소듐도데실설페이트, 솔비탄모노올레이트를 첨가하였다. 합성된 입자는 별모양, 원추형, 씨드형태, 박막형태의 구형의 형상을 보였다. 합성된 산화아연의 물리 화학적 특성은 XRD, SEM, TGA을 통하여 확인하였고, 광학적 특성은 UV-vis spectroscopy, PL spectroscopy, Raman spectroscopy으로 확인하였다.

Keywords

References

  1. N. F. Hamedani, A. R. Mahjoub, A. A. Khodadadi, Y. Mortazavi, "Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol", Sensor. Actuator., 156, 737-742 (2011). https://doi.org/10.1016/j.snb.2011.02.028
  2. J. Sun, S. Dong, Y. Wang, S. Sun, "Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst", J. Hazard. Mater., 172, 1520-1526 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.022
  3. L. Liu, M. Ge, H. Liu, C. Guo, Y. Wang, Z. Zhou, "Controlled synthesis of ZnO with adjustable morphologies from nanosheets to microspheres", Colloid. Surface. A., 348, 124-129 (2009). https://doi.org/10.1016/j.colsurfa.2009.07.003
  4. Z. Zhu, D. Yang, H. Liu, "Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances", Adv. Powedr. Technol., 22, 493-497 (2011). https://doi.org/10.1016/j.apt.2010.07.002
  5. A. Phuruangrat, T. Thongtem, S. Thongtem, "Controlling morphologies and growth mechanism of hexagonal prisms with planar and pyramid tips of ZnO micro flowers by microwave radiation", Ceram. Int., 40, 9069-9076 (2014). https://doi.org/10.1016/j.ceramint.2014.01.120
  6. S. H. Cho, S. H. Jung, "Morphology-Con trolled Growth of ZnO Nanostructures Using Microwave Irradiation: from Basic to Complex Structures", J. Phys. Chem. C., 112(33), 12769-12776 (2008). https://doi.org/10.1021/jp803783s
  7. H. F. Wilson, C. Tang, "Morphology of Zinc Oxide Nanoparticles and Nanowires: Role of Surface and Edge Energies", J. Phys. Chem. C., 120(17), 9498-9505 (2016) https://doi.org/10.1021/acs.jpcc.6b01479
  8. M. Ahmad, S. Yingying, "Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes", J. Mater. Chem., 21, 7723-7729 (2011) https://doi.org/10.1039/c1jm10720h
  9. T. Thongtem, A. Phuruangrat, S. Thongtem, "Characterization of nanostructrured ZnO produced by microwave irradiation.", Ceram. Int., 36, 257-262 (2010). https://doi.org/10.1016/j.ceramint.2009.07.027
  10. Z. Zhu, D. Yang, H. Liu, "Microwave-asisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances", Adv. Powedr. Technol., 22, 493-497 (2011). https://doi.org/10.1016/j.apt.2010.07.002
  11. Q. Li, H. Li, R. Wang, G. Li, H. Yang, R. Chen, "Controllable microwave and ultrasonic wave combined synthesis of ZnO micro-/nanostructures in HEPES solution and their shape-dependent photocatalytic activities", J. Alloy. Compd., 567, 1-9 (2013). https://doi.org/10.1016/j.jallcom.2013.03.077
  12. N. Predan, M. Enculescu, I. Enculescu, "Polysaccharide-assisted crystallization of ZnO micro/nanostructures", Mater. Lett., 115, 256-260 (2014). https://doi.org/10.1016/j.matlet.2013.10.081
  13. Sadia Ameen, M. Shaheer Akhtar, Hyung-Shik Shin, "Low temperature grown ZnO nanotubes as smart sensing electrode for the effective detection of ethanolamine chemical", Matt. Letter, 106, 254-258 (2013). https://doi.org/10.1016/j.matlet.2013.05.031
  14. D. Ramimoghadam, M. Z. Bin Hussein, "The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method", Int. J. Mol. Sci., 13, 13275-13293 (2012). https://doi.org/10.3390/ijms131013275
  15. H. C. Noh, T. H. Kang, S. G. Oh, "Synergy effect for performance of anionic SDS/ADS mixtures with amphoteric and nonionic surfactants", J. Korean. Oil. Chem. Soc., 33(3), 449-458 (2016) https://doi.org/10.12925/jkocs.2016.33.3.449
  16. Y. K. Chung, W. K. Kang, "Preparation of ZnO Nanoparticles by Laser Ablation of Dispersed ZnO Powedr in Solution", J. Kor. Chem. Sci., 50, 440-446 (2002).
  17. S. Anas, R. V. Mangalaraja, "Studies on the evolution of ZnO morphologies in a thermohydrolysis technique and evaluation of their functional properties", J. Hazard. Mater., 175, 889-895 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.093
  18. Bo Li, Yu-e Shi, Jingcheng Cui, Zhen Liu,, Xiaoli Zhang, "Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy", Anal. Chim. Acta., 923, 66-73 (2016) https://doi.org/10.1016/j.aca.2016.04.002
  19. Rajesh Kumar, Rajesh Kumar Singh, "Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies", MATER DESIGN., 111, 291-300 (2016). https://doi.org/10.1016/j.matdes.2016.09.018
  20. J. Wang, Y. Dai, "Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO", Appl. Mater. Interfaces., 4(8), 4024-4030 (2012). https://doi.org/10.1021/am300835p
  21. Y. W. Wang, "Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties", J. Cryst. Growth., 234, 171-175 (2002). https://doi.org/10.1016/S0022-0248(01)01661-X